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SUMMARY

The Thompson model (Thompson et al., in press), a heat balance model for cattle, was evaluated for Bos indicus
and B. taurus under different climate conditions through the use of two local and one global sensitivity analyses
and tested against independent datasets. The local analyses, which evaluate the individual effects of parameters
on model output, showed that the vasodilation/vasoconstriction parameter and reference body temperature (Tbref)
strongly affected body temperature. The global analysis, which evaluates the overall effect of parameters onmodel
output, showed that 6 out of 24 parameters account for 0·79–0·89 of the model variation. The high proportion of
variation accounted for by the parameters demonstrates that the model is linear in its parameters, with little
interaction between the parameters.
The Thompson model was tested against four independent datasets which included both B. indicus and

B. taurus animals. The prediction of the relationship between skin and body temperature from the model aligned
closely with the relationship in the datasets (R2 ranged from 0·55 to 0·87, mean bias ranged from 0·32 to 1·49). The
prediction of sweating and respiration rates from the model aligned closely with the rates measured in the datasets
(R2 ranged from 0·80 to 0·98 and 0·79 to 0·93, respectively). The delay in the diurnal body temperature variation,
relative to air temperature, was more accurately predicted for cattle in the sun than for cattle in climate chambers.
Given the limited datasets for construction and parameterization (both of which are described in Thompson et al.,
in press), the model evaluated in the current study performed relatively well compared to the literature and known
biology.

INTRODUCTION

The present paper evaluates the mathematical heat
balance model described in Thompson et al. (in press).
The heat balance model predicts body and skin tem-
peratures and physiological responses such as sweat-
ing and respiration rates based on the breed and body
characteristics of the animal and climate factors. Since
this is the first heat balance model for cattle which is
both dynamic and mechanistic, it can be useful in
determining heat stress in livestock as well as guiding
research in heat stress. A mechanistic model should
account for all the major physiological processes
related to thermoregulation and for the differences
between species. Therefore, livestock producers and
researchers can use the model to plan research, and to

determine and then mitigate the detrimental effects of
heat stress.

A thorough evaluation of a functional heat balance
model requires a sensitivity analysis and a comparison
against independent data. A sensitivity analysis quan-
tifies the sensitivity of model outputs to its internal
parameters. The technique is useful for ranking the im-
portance of model parameters and their contribution
to the behaviour and variation of model outputs
(Saltelli et al. 2008). In addition, the results of the
sensitivity analysis can be used as a decision-making
tool to guide future experiments, by identifying which
measurements would be most helpful for both
estimating heat balance in the animal and evaluating
the predictive ability of the model. The current study
evaluates the Thompson model (in press) with the use
of three different sensitivity analyses and by testing
model predictions against independent datasets from
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Allen (1962), Brown-Brandl et al. (2003, 2005) and
Finch (1985).

MATERIALS AND METHODS

Model description

The model equations and methods for simulation are
detailed in Thompson et al. (in press). The Thompson
model is a heat balance model for growing and mature
cattle, and is comprised of three state variables that
represent the heat content in the body-core layer, the
skin layer and the coat layer (J). The body core loses
heat directly through the lungs (both sensible and
latent heat loss) and it exchanges heat with the skin
layer (all heat exchange variables are in W; W=J/s).
The skin layer exchanges heat with the body-core and
coat layers and it loses heat directly through cutaneous
evaporation. The coat layer exchanges heat with the
skin layer and with the environment, the latter being
through convection, solar radiation and long-wave
radiation (McArthur 1987).

In the Thompson model, as cattle experience heat
stress, three physiological processes are implemented
to decrease body temperature: vasodilation, and
increased respiration and sweating rates. These pro-
cesses increase heat loss over all state variables (body
core, skin and coat).

The environmental inputs into the Thompson
model are air temperature, wind speed, humidity and
solar radiation. The Thompson model has parameter-
specific inputs/values for B. indicus and B. taurus. The
current paper evaluates the Thompson model across
both species through a sensitivity analysis and a pre-
diction evaluation against independent datasets.

Sensitivity analysis

The sensitivity analysis consisted of measuring the
sensitivity of the model outputs on 24 model para-
meters. The sensitivity is a dimensionless variable that
can be defined as the change in model outputs with
respect to the change in model parameters. Theor-
etically, the absolute value of sensitivity ranges from
zero to infinity, but for practical purposes, a value
approaching 1·0 or greater is considered sensitive.
Thus, a high sensitivity indicates that a specific model
parameter is influential. Three forms of sensitivity
analysis were conducted on the Thompson heat bal-
ance model: two local sensitivity analyses (Local I and
Local II) and one global sensitivity analysis (Global).

Global was run under parameter changes ranging
from 1 to 10%, which resulted in ±3% being the most
realistic range of body temperature. The local analyses
were then run at the same change, ±3%, in parameter
values. The local sensitivity analyses consist of an
evaluation of the effect of each of the parameters on
the state variables either at steady state (Local I) or
dynamically (Local II). The Local I involves constant
climate inputs while the Local II involves the daily
fluctuations in the climate variables: temperature,
wind speed, humidity and solar radiation. All sensi-
tivity analyses use the climate input information from
weather stations in Davis, CA, in the year 2006, Julian
day 172 (which represents ‘hot’ climate conditions),
where air temperature ranged from 17·7 to 37·2 °C,
solar radiation reached 973W/m2, relative humidity
ranged from 14 to 49% and wind speed ranged from
2·3 to 5·6 m/s. All 24 parameters in themodel were run
through the sensitivity analyses, and the 13 most
sensitive are defined in Table 1. All sensitivity analyses
were conducted with body temperature (Tb, K), cal-
culated from body-core heat content, as the response
variable because it has a much greater pool of heat in
comparison to skin heat content.

Local I

In the Local I analysis, all input parameters and climate
variables are set to predefined values; one parameter is
adjusted and then the model is rerun. The resulting
change in the response variable, ∂Tb, can then be used
to calculate the sensitivity (S, dimensionless) of the
changed parameter as follows:

S = ∂Tb
∂p

( )
× p

Tb

( )
(1)

where Tb and p̄ are the original (mean) values for the
output and the parameter, respectively (the parameter
of interest can be any one of the 24 parameters
included in the model), S is the sensitivity of Tb to the
parameter (p). The percent change in the parameter
(∂p, %), was set to ±3% for Local I to correspond with
the value determined through Global and after
the determination that below this value the sensitivity
of Tb remained linearly related to changes in the
parameter. In order to run Local I, climate inputs were
set to constant values which referred to a set point in
time, e.g. the climate set at 01·30 h, and the model run
until Tb reached steady state. Once steady state was
reached, the value of Tb was input into Eqn (1) (as Tb),
and the model was rerun with a parameter adjusted by
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±3%, to calculate both ∂Tb and the sensitivity of Tb (S )
for each p. This process was implemented at all of
the time points from midnight to midnight in 30-min
increments, calculating the change in sensitivity
throughout the day. All model parameters were tested
in the current analysis.

Local II

Local II is a common local sensitivity analysis in which
one parameter is changed and the model then runs
dynamically for 24 h (due to varying climate inputs)
(Turanyi 1990). With the use of Eqn (1), the difference
between the output variable calculated with the
original parameter value and that calculated with the
adjusted parameter value (parameter ±3%) was cal-
culated continuously over the 24-h run time. Local II
differs from Local I in that Local II, the change in Tb at
any given time point, is a function of both the adjusted
parameter value and the value of Tb from the previous
time step. As in Local I, Local II was run for all model
parameters.

Global

Global was conducted using the method described
by Saltelli et al. (2008). Twenty four parameters were
included in Global, and a parameter matrix (xij;
i=1,. . .,10000 and j=1,. . .,24) was constructed with
each column representing a parameter and each row
representing a draw from uniform distributions. The
values for each parameter were drawn from24 uniform

distributions, one for each parameter, with upper and
lower bounds given as ±3% of the original value.
Hence, 10000 simulations were performed, with the
parameter inputs for each simulation being given by a
row from the parameter matrix. The Tb outputs were
saved from each run and stored in a model output
matrix (yik; i=1,. . .,10000 and k=1,. . .,96), with the
rows being simulation outputs and the columns a time
point from the model (0–24 h) in increments of 15min.
Ninety-five percent confidence intervals were calcu-
lated for each column of ywith the use of the ‘quantile’
function in R (R Development Core Team 2010).

Standardization takes place in the form of a trans-
formation by the ratio of the standard deviation of a
parameter to its mean. The effect of the standardization
is to remove the influence of units and place all para-
meters on an equal level. In a standardized regression
setting, the total variation in the data equals 1·0 and
each regression parameter squared describes a specific
fraction of the model variance that is accounted for
by variation in each structural parameter in the
dynamic model. The R2, the coefficient of deter-
mination, from the standardized regression will be
close to 1·0 if the model is linear in its parameters. The
x and y matrices (Xij and Yik, respectively) were nor-
malized column-wise (thus, each column has a mean
of zero and a variance of 1), with the use of the
following equation:

Xij =
xij − xj
σxj

and Yik = yik − yk
σyk

. (2)

Table 1. The sensitivity values of parameters evaluated with Local I and Local II for Bos taurus under hot
conditions at 14·00 h

Parameter Definition Units

Local I Local II

Rank Value Rank Value

arr Respiration rate parameter (intercept) breaths/min 1 0·393 1 1·149
brr Respiration rate parameter (slope) breaths/(K×min) 2 0·363 2 1·075
bsr Sweating rate parameter /°C 3 0·343 3 0·988
Ta Air temperature °C 4 0·176 4 0·553
bA Animal surface area parameter m2/kg0·57 Mb 5 0·109 6 0·293
Mb Body-core mass Kg 6 0·094 17 0·080
aDMI Feed intake parameter kg Intake/kg Mb 7 0·074 5 0·245
Tbref Reference body temperature °C 8 0·069 10 0·107
asr Sweating rate parameter g/m2 9 0·056 8 0·160
Solar Solar radiation W/m2 ground surface 10 0·049 7 0·170
MEC ME concentration J/kg DM 11 0·043 9 0·145
Wind Wind speed m/s 12 0·007 20 0·020
ρc Reflection coefficient of coat Dimensionless 13 0·006 19 0·044

Evaluation of a thermal balance model for cattle 485



where xj and yk are the jth and kth column-wise mean
values of parameter and model outputs, respectively;
σxj and σyk are the jth and kth column-wise standard
deviations of the parameter andmodel outputs, respec-
tively; and Xij and Yik are the normalized parameter and
output values, respectively.

The kth set of model outputs (Yi(k)) were regressed
on the Xijwhere the superscript k is used to indicate the
kth (k=1,. . ., 96) regression model, which is given
below and fitted using ordinary least square as follows:

Y (k)
i =

∑24
j=1

β(k)j × Xij + e(k)i

i =1, . . . , 10 000, j = 1, . . . , 24, k = 1, . . . , 96

(3)

where i is the number of model runs, j indexes the
parameters and ei

(k) is the error term in the kth re-
gressionmodel. The betas, β(k)j , represent the change in
model output standard deviation per one unit change
in parameter standard deviation, which is estimated at
the kth time point. In the standardized regression
setting, the model output variance at the kth time point
is given by linear relationships in the parameters and

can be calculated as
∑24

j=1 β
(k)
j . This is equal to R2 and

hence the quantity 1–R2 is the fraction of the model
variance at the kth time point that is not explained by
linear relationships between parameters. This fraction
can be interpreted as the degree of nonlinearity
in model output caused by interactions between
model parameters. β2j is the change in variance of

the model output given one unit change in variance of
the parameter. If R2>0·8 then β2j is an approximation

of the first-order sensitivity indices as given by the
modified Sobol method (Saltelli et al. 2008).

Globalwas run for each species under hot, mild and
cold conditions (days 31, 124 and 172). The model
was deemed sensitive to a parameter if the square of

β(k)j from the regression was greater than 0·04 at any

given point throughout the day.
All sensitivity-related calculations were performed

in R, whereas the Thompson Heat Balance model was
run in Matlab (Matlab 2010; R Development Core
Team 2010).

Prediction evaluation

Four datasets were used to evaluate the predictive
abilities of the model, including Allen (1962), Brown-
Brandl et al. (2003, 2005) and Finch (1985). The Allen
(1962) and Brown-Brandl et al. (2003) datasets were

used because they contained sweating rates and/or
respiration rates. The Brown-Brandl et al. (2005) data-
set was used for fitting the respiration rate equations
within the model, but was further implemented in
testing the model because it provided solar radiation
data, which allowed the testing of the solar radiation
portion of the model. The Finch (1985) dataset was
used because it reported values for the two state vari-
ables (body and skin heat content) and the environ-
mental inputs.

Air temperature and humidity inputs were available
for all datasets. Unless otherwise noted, wind speed
was assumed to be zero in climate chambers. The
radiant temperature of the surroundings was set equal
to the air temperature in the climate chambers, and
solar radiation was set to zero. The methods section in
the Allen (1962) article states that animals were kept in
chambers at a specific temperature for 30–40min,
then measurements were taken and the temperature
was raised to the next level. Neither the time it took to
raise the chamber temperature nor the time to make
the measurements was included in the description.
Therefore, to test this dataset, the air temperature input
into the model was assumed to remain constant for
35 min and the time that it took to be raised to the next
temperature level was assumed to be 10min.

Another assumption made for the datasets involved
the method for modelling heat production from feed
intake. Most datasets measured feed intake (all except
Allen 1962), but the metabolizable energy (ME) of the
feed was not provided in any dataset. In addition, all of
the experiments included ad libitum feeding immedi-
ately prior to the heat stress trials without measuring
intake, which was measured only during the trials. A
drop in heat production as a result of a drop in feed
intake is a delayed effect; thus, because all the experi-
ments were short in duration (max length of 24 h), heat
production was assumed to be ad libitum heat pro-
duction. Ad libitum feed intake was not measured
in the experiments; therefore, heat production was
calculated with intake being 0·02 kg/kg Mb and ME
being 10·42×106 J/kg DM.

The statistics implemented to evaluate model
prediction v. the experimental results, for the output
variables Tb, skin temperature (Ts), respiration rate
and sweating rate, are the Mean bias (°C), the root-
mean-square error of prediction (RMSEP, °C) and the
errors due to Bias, Slope and Random (dimensionless),
as presented by Bibby & Toutenburg (1977).Mean bias
demonstrates whether the model is over- or under-
predicting, whereas RMSEP yields the amount of error
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of the model predictions. The statistics Bias, Slope and
Random are the proportions of error (which sum to 1·0)
due to each of those statistics.

RESULTS AND DISCUSSION

Sensitivity analysis

The most sensitive parameters are presented below
and in Table 1, which includes the most sensitive
parameters from Local I and the corresponding values
for Local II for B. taurus. The sensitivity analyses were
conducted for both B. indicus and B. taurus under hot,
mild and cold conditions, but due to space limitations
only the results for B. taurus under the hot conditions,
which show the greatest variation in the sensitivities
and model behaviour, are presented for each analysis.

Local analyses

Figure 1 shows the sensitivities of Tb for the five most
sensitive parameters calculated with Local I for both B.
taurus and B. indicus under hot climate conditions.
Across all climate conditions, the Tb for B. indicus
exhibited a greater sensitivity to Tbref than did the Tb for
B. taurus. Under hot conditions, the Tb for B. taurus
and B. indicus were most sensitive to respiration rate
parameters (arr and brr, which are the slope and
intercept for respiration rate v. body temperature,
respectively, although only arr is shown in Fig. 1 as the
pattern for both is similar), sweating rate parameter (bsr;
g sweat/m2 of skin area per hour), animal surface area

parameter (bA), air temperature (Ta) and reference body
temperature (Tbref) parameters. The parameters arr, brr
and bsr were originally predicted in Thompson et al.
(2011). Under mild conditions for both species, body-
coremass (Mb) and a feed intake parameter (aDMI) were
more influential than were Ta and bsr. In general, as the
climate cooled, most parameters decreased in sensi-
tivity whereas Tbref increased in sensitivity. The
parameters with the highest sensitivity are shown
with their respective rankings in Table 1 for B. taurus
and B. indicus.

Figure 1 shows sharp changes in the sensitivity of Tb
for the all of the parameters, except Tbref, after sunrise
and around sunset (08·00 and 18·00 h, respectively)
with the inverse occurring for Tbref. These sudden
changes result from a maximum function in the body
tissue resistance (rs, s/m) equation (Eqn (1.2) in
Thompson et al., in press). Body tissue resistance (rs)
reached a minimum, representing the maximum
amount of vasodilation. Thus, a further increase in
the rate of heat loss from the body resulted from
increased respiration, causing a sharp increase in the
sensitivity of the respiration rate parameter, arr. At high
temperatures, arr is one of the most important limiting
parameters of heat loss.

Changes in body heat are calculated using three
variables: heat production, heat flow to the skin and
heat loss through respiration (Eqns (1.10), (1.1) and
(1.3), respectively in Thompson et al., in press). Heat
loss from the body is impacted by the limit in heat flow
to the skin (a flow driven by rs), increasing the impact of
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Fig. 1. Sensitivity of the most sensitive parameters on predicted body temperature (Tb) for Bos indicus and Bos taurus under
hot climate conditions using Local I, as described in the methods. The parameters are as follows: Tbref is reference body
temperature (a vasodilation/vasoconstriction parameter), arr is a respiration rate parameter, bsr sweat is a sweating rate
parameter, Ta is air temperature, and bA is an animal surface area parameter.
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the other variables on body temperature. Respiration
losses compensate for the minimum value reached in
rs; therefore, the sensitivity of Tbref, a parameter which
drives rs, inversely correlates with the sensitivity of the
respiration rate parameters. The sensitivity of Tbref does
not decrease to zero as rs reaches a minimum because
it is also an input for heat production (as a basis in the
maintenance requirement calculation; Eqn (1.11) in
Thompson et al., in press), although the effect of Tbref
on heat production is small comparedwith that on heat
flow to skin. The sharp increases in the respiration rate
parameters cause the sudden changes in sensitivity
seen in the other parameters (Fig. 1).

Figure 2 shows the effect of the most sensitive
parameters, arr, Tbref, bsr, bA and Ta, on Tb for B. taurus
and B. indicus under hot conditions calculated with
Local II. The parameters arr and brr most strongly
affected body temperature during the day for both
species, but due to the great extent of the overlap, only
arr is shown in Fig. 2. Tbref, exhibits the greatest effect
on Tb at night for both species. The Tb of B. taurus was
more sensitive to the parameters bA, Ta and bsr than
was that of B. indicus although both species had
relatively low sensitivities to these parameters com-
pared with Tbref and arr. The Tb of both B. taurus and
B. indicus were less sensitive to all model parameters
under cold conditions. The parameters bA and Mb

were more important than were respiration rate
parameters for B. indicus under cold conditions (results
under cold conditions are not shown).

Table 1 shows the top 13 most sensitive parameters
analysed with Local I and the rank of those parameters

analysed with Local II. The top four ranked parameters
for both analyses are identical in order, although their
sensitivity values are different, where Local II in general
has higher sensitivity values than Local I. Reference
body temperature is not among the top ranking
parameters because the time point for the table is
14·00 h, at which the model has a low sensitivity to
Tbref (Figs 1 and 2). The ranks of the next eight
parameters are not as closely aligned between Local I
and Local II, but these parameters have low sensitivity
and little impact on the model outputs. Thus, both
analyses yield similar information about the model
parameters, which demonstrates that either analysis
may be sufficient.

Local II is more commonly used than is Local I for
dynamic models. With Local II, the change in a
response variable, such as Tb, is dependent on the
change of not only a parameter, but also the value of
the response variable from the previous time step, as
illustrated by the reflection coefficient of the coat, ρc.
For example, there is zero sensitivity of the model
outputs to ρc before sunrise when both Local II and
Local I are run (this example is for explanatory
purposes; results not shown). At sunrise, sensitivity to
ρc enters into the model, and theoretically it should
leave at sunset, but such is not the case in Local II, as Tb
does not quite return to the original value. Local I does
not depend on the previous time step and the
sensitivity of Tb on ρc does return to zero. This
independence from the previous time step can be
seen as strength of Local I, as it helps in the
understanding of the model equations and behaviour
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Fig. 2. Local II sensitivity analysis for Bos indicus and Boss taurus under hot climate conditions. The figures are the
sensitivity of the model parameters on body temperature (Tb) where Tbref is the reference body temperature (a vasodilation/
vasoconstriction parameter), Ta is the air temperature, bsr is a sweating rate parameter, bA is an animal surface area
parameter and arr is a respiration rate parameter (intercept).
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at a fixed point in time. On the other hand, Local II
better describes the effect of a change in a parameter
on the output over time by accounting for the previous
time step, i.e. it smoothes model variance. Moreover,
model dynamics depend on the previous time steps
because the rate is a function of state, i.e. rate-state-
formalism.
The Tbref and respiration rate parameters were found

to be the most sensitive in the model with the use of
either Local II or Local I. Local I was more sensitive to
the conditional statements (if/then and max and min
functions) in the model. Both analyses appear to be
useful, but Local I may be a better means of under-
standing the equations and their functional relation-
ship with the parameters, whereas Local II may be a
better means of understanding the effect of the
parameters on model behaviour. Both analyses yield
similar results; thus, Local II may be more appropriate
with less computation time for dynamic models
because it is easier to implement and it will output
dynamic sensitivities.

Global

The high Global R2 value ranging from 90·4 to 95·4
(using the most sensitive parameters, for B. indicus and
B. taurus, respectively), demonstrates that the model is
linear in its parameters (Saltelli et al. 2008). Figure 3
presents sensitivity (β2j ) for the selected model para-
meters plotted against time for both cattle species
under hot conditions, where the parameters Tbref, arr,
brr, bsr, Ta and bA were most sensitive. The R2

quantifies the proportion of the total model variance
that is explained by linear combinations of the para-
meters. For B. taurus, the most important parameters
(sensitivity indices >0·04) explained 0·88–0·99 of the
model variation (Fig. 3). The proportion of the variation
accounted for by the parameters increased from 0·94
to 1·00 when all of the parameters were included.
Therefore, most of the model variation can be ac-
counted for by just a few parameters (Tbref, arr, brr, bsr
and Ta). The parameters Tbref, arr, brr and bsr were the
only ones contributing 10% or more to the model
variation under hot conditions. Given this outcome,
the future experiments can focus on measurements of
only themost important parameters as long as the other
parameters have been adequately described. The
Thompson model is a relatively complex mechanistic
model, but its use in a specific situation requires fitting
of only the three to five parameters to which the model
outputs are most sensitive. The estimates for the other
parameters are sufficient and do not have to be
estimated specifically because their sensitivity is
relatively low.

Figure 4 shows Tb over time for both B. indicus
and B. taurus under hot conditions. The confidence
intervals are constant over time, except those for
B. indicus. The symmetry of the confidence intervals
demonstrates that the model variation is independent
of time, meaning sensitivity to variation in model
parameters over time remains of similar magnitude.
Figure 3 helps to explain the narrowing of the
confidence intervals during the day for B. indicus
under hot conditions. For B. indicus, only the two
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Fig. 3. Sensitivity indices for body temperature (Tb) from Global for Bos indicus and Bos taurus under hot conditions plotted
over 24 h. The parameters included are those whose sensitivity indices are greater than 0·04 at any given time point
throughout the day. Here Tbref is a vasodilation parameter, arr and brr are the respiration rate parameters, bsr is a sweating
rate parameter and Ta is air temperature. Some of these lines overlap. These sensitivities represent the proportion of total
variation in the model accounted for by each parameter.
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respiration rate parameters greatly increase in sensi-
tivity during the day, while that of Tbref is small. For
B. taurus, the sensitivity of four parameters increases
during the day followed by a concomitant decrease in
the sensitivity of Tbref; thus, the confidence interval for
them does not decrease.

The variation in the model that is not accounted for
by a linear relationship with parameters (0·001–0·062)
is accounted for by non-linear relationships, which are
the interactions between the parameters (Saltelli et al.
2008). A great deal of computing time (>375 h, using
20+ parameters in Matlab) is required for calculating
these interactions. As the relative contribution of the
interaction to model variance was small, these cal-
culations were not performed. The information about
model variance and the contribution of the different
parameters given by Global cannot be obtained
through a local sensitivity analysis, thus making
Global a vital addition to model evaluation (Figs 3
and 4). In addition, Global can be used as a guide to
data collection in experiments and as a means for
further development of mathematical models.

Prediction evaluation

The species and climate inputs used to evaluate the
model against the datasets are shown in Table 2.
Figure 5 shows the reported values for skin v. body
temperatures and sweating rates v. skin temperature
from the Allen (1962) dataset and the predicted values
from the model for B. indicus and B. taurus cattle,
respectively, the statistical calculations for which can
be seen in Tables 3 and 4. The statistical calculations
are the results of the predicted and experimental data
for both skin v. body temperature and for skin v. air
temperature. The skin v. body temperature plots show
that the model accurately predicts this relationship for
both species, although the model does not contain
stochastic variables and, therefore, does not account
for random variation. Sweating rates for B. indicus are
predictedwith a low Bias and Slope; however, the rates
have a low Bias for B. taurus, but a large Slope.

The comparison of the model predicted body
temperature with reported body temperature, for the
given air temperature (Table 4), shows that Bias and
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Fig. 4. Predicted mean body temperature (solid line) and upper (97·5%) and lower (2·5%) confidence intervals (dashed
lines) for Bos indicus and Bos taurus under hot conditions. The uncertainty around the predicted mean body temperature is
due to ±3% uncertainty implemented in the structural parameters of the heat balance model as described in the methods.

Table 2. Model inputs used from evaluation datasets

Variable/parameter (Allen 1962) (Finch 1985) (Brown-Brandl et al. 2003) (Brown-Brandl et al. 2005)

Air temperature (°C) 18–41 25–46 11–41 15–35
Solar radiation max (W/m2) 0 0 0 0–881
Relative humidity (%) 45–55 37–50 21–76 41–97
Wind speed (m/s) 0·6 0 0 1·1–4·9
Body weight (kg) B. taurus 320 380 330 378
Body weight (kg) B. indicus 320 395 N/A N/A
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Slope combined for both species are responsible for
the majority of the error, perhaps because of the timing
of the rise in room temperature. The Allen (1962)
article does not provide the time it took for the room
temperature to increase or the time it took for
measurements to be taken. Therefore, estimates of
the timing of those events were made, which impact
both the slope and the shape of the simulated body
temperature curve (Table 4).
The R2 for the sweating and respiration rate

predictions (0·80–0·98 and 0·79–0·93, respectively)
of the Allen (1962) dataset for both species are higher
than those for the Tb and Ts predictions (0·51–0·84)
(results not shown). Random is responsible for the
majority of the error (0·36–0·76) for the Ts v. Tb
predictions for all the treatments except for one Jersey
treatment. A large Random indicates that the model’s
predictions do not exhibit a large Bias or Slope, and
thus the fit cannot be further improved with the given
model (Table 3).

The Thompson model (Thompson et al., in press)
predictions for body and skin temperatures v. air
temperatures and skin v. body temperatures for the
Finch (1985) dataset are shown in Fig. 6, the statistical
calculations for which are in Tables 3 and 4. The
model predictions for B. taurus (Shorthorn) body and
skin temperatures more closely aligned with the Finch
dataset than did the predictions for B. indicus
(Brahman) body and skin temperatures, although
temperatures were overpredicted for both species.
The model under-predicted skin temperature com-
pared with body temperature as body temperature
neared 39 °C, but otherwise predicted the skin v. body
temperature relationship accurately for both species
(lower two graphs in Fig. 6). The R2 for body v. air
temperature and skin v. body temperature for both
species ranged from 0·79 to 0·96, with Bias contribut-
ing the majority of error (0·61–0·96) (Tables 3 and 4).
More information from the experiments, such as
sweating and respiration rates would allow for a better
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understanding of the Bias component. The over-
prediction in the B. indicus data can be attributed to
the overestimation of heat production. Heat produc-
tion is difficult to estimate accurately due to the lack of
feed intake information, such as theME of the feed and
intake levels immediately prior to the experiment.

The Brown-Brandl et al. (2003) dataset and
predictions are shown in Fig. 7, and the statistical cal-
culations are presented in Table 4. The model under-
predicted Tb at an increasing rate as air temperature
increased from a treatment average of 18–34 °C. The
maximum underprediction of body temperature oc-
curred in the time range of 20·00–22·00 h (underpre-
diction of 1·1 °C in the 34 °C treatment). The Brown-
Brandl et al. (2003) dataset showed that the maximum
body temperature occurred 4 h after the maximum
air temperature was reached, whereas the model
found that the maximum body temperature occurred
1·25–2 h after the maximum air temperature was
reached.

The underestimation of body temperature in the
Brown-Brandl et al. (2003) dataset can be attributed
to evaporative losses (Fig. 7). The model overpredicted
evaporative losses by 189 kJ/kg0·75 in the 34 °C treat-
ment and by 210 kJ/kg0·75 in the 30 °C treatment. The
predicted evaporative loss estimates were 48 and 65%
above the observed values for the 34 and 30 °C treat-
ments, respectively. Evaporative losses accounted
for 0·78–0·95 of total heat losses for the 34 and
30 °C treatment groups; thus, a large error in this esti-
mate led to a large error in body temperature. Kibler &
Yeck (1959) found evaporative heat losses to reach
458 kJ/kg0·75 under similarly heat stressed conditions
for shorthorn beef cattle, which was above that
measured by Brown-Brandl et al. (2003) (390 kJ/
kg0·75) but below the predicted evaporative heat loss
of 579 kJ/kg0·75. The large overestimation of evapora-
tive heat loss alone would cause a greater disparity
between measured and simulated body temperatures.
However, the large predicted evaporative losses

Table 3. Results of statistical analysis of model predicted skin and body temperature compared with
experimental data of skin and body temperature (°C)

Reference Breed Mean bias* °C R2 Bias† % Slope % Random % RMSEP‡ °C

(Finch 1985) Brahman 1·49 0·87 86·1 8·8 5·1 1·59
Shorthorn 0·99 0·79 61·3 8·4 30·3 1·23

(Allen 1962) Zebu 0·32 0·55 22·0 28·4 49·6 1·75
Jersey 0·90 0·56 25·1 26·2 48·7 1·94

* Mean bias is observed minus predicted.
† Bias, slope and random are percentage of mean-square error of prediction.
‡ Root-mean-square error of prediction.

Table 4. Results of statistical analysis of model predicted body temperature (°C) compared with experimental
data, given air temperature (°C)

Reference Treatment/species Mean bias* °C R2 Bias† % Slope % Random % RMSEP‡ °C

Brown-Brandl et al. (2003) Mild 0·28 0·22 48·6 39·5 11·9 0·40
Hot 0·59 0·41 69·0 6·0 25·0 0·71

Brown-Brandl et al. (2005) Mild – shade −0·07 0·46 6·2 45·0 48·7 0·29
Mild – sun −0·43 0·05 24·4 72·8 2·7 0·87
Hot – shade −0·57 0·46 70·8 19·8 9·4 0·67
Hot – sun −1·46 0·83 65·2 33·6 1·2 1·81

Finch (1985) B. indicus −0·94 0·96 97·1 2·5 0·4 0·95
B. Taurus −0·62 0·96 77·2 21·8 1·0 0·69

Allen (1962) B. indicus −0·41 0·57 56·6 40·7 2·8 0·53
B. Taurus −0·04 0·78 9·1 86·8 4·2 0·29

* Mean bias is observed minus predicted.
† Bias, slope and random are percentage of mean-square error of prediction.
‡ Root-mean-square error of prediction.
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compensated for the higher predicted heat production
compared to the observed heat production (725 v.
540 kJ/kg0·75, respectively). The lower value for

measured heat production can be attributed to
decreased feed intake. When the model predicted
the data based on the lower intake, heat production
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was greatly underestimated. In the experiments, the
decrease in heat production was gradual as the
animals shifted from eating ad libitum to a reduced
feed intake; thus, the measured heat production was a
function of both the decreased and the ad libitum
intake, with the actual heat production falling between
the decreased and the ad libitum intake at steady state.
The experiments did not include a delay in measuring
heat production after the animals were subjected
to heat stress and began to decrease intake. Therefore,
heat production was calculated based on ad libitum
feed intake.

The model does not account for heat increment of
feeding and, instead, assumes constant heat pro-
duction throughout the day. Sprinkle et al. (2000) has
shown that the heat increment of feeding is dependent
on the species as well as the feed energy due to differ-
ing rates of passage of feed. The assumption of con-
stant heat production contributes to the differences in
the predictions of the Brown-Brandl et al. (2003) data-
set, in which the model consistently underpredicted
body temperature. The cattle decreased their feed
intake as body temperature rose, whereas the predic-
tions were made under the assumption of a constant
feed intake. Decrease in heat production lags after
decrease in feed intake, but models that demonstrate
this lag are scarce; thus, a constant value for intake is
used (McGovern & Bruce 2000; Turnpenny et al.
2000). In addition, the cattle ate less as body tem-
perature rose, yet only an average daily intake is given
in the Brown-Brandl et al. (2003) dataset; thus, even if
heat incrementwere implemented in themodel, thede-
cline in intake would still have to be estimated, which
would have contributed to the error component.

The Thompson model (Thompson et al., in press)
demonstrated a prediction trend with the Brown-
Brandl et al. (2005) dataset similar to that with the
Allen (1962) dataset, in which the accuracy of the
model decreased as heat stress increased. The model
overpredicted Tb as Ta increased, with a greater over-
prediction for cattle under solar radiation (Fig. 8). The
statistics for the Brown-Brandl et al. (2005) predictions
are shown in Table 4. The maximum overprediction
for the solar radiation treatments occurred during
daylight hours, whereas the model more accurately
predicted body temperature during the night. Deter-
mining the reason for overprediction under solar radi-
ation requires more information to compare the
calculation of exchange of thermal radiation with the
actual exchange experienced by the animals. Few ex-
periments have measured or calculated solar radiation
absorption, leading to the use of theoretical relation-
ships in the model in the place of empirical relation-
ships, which may not correctly represent the system.

Some of the differences between the experimental
results andmodel predictions across all datasets can be
attributed to the delay in Tb increase compared with
the rise in Ta. Predicted Tb declined more at low Ta
than was demonstrated by the Allen (1962) dataset
and, likewise, increased more rapidly than the dataset
at high Ta, meaning that the predicted Tb was more
sensitive to Ta than was the Tb for cattle in the
experiment (results not shown). The predicted peak
body temperature occurred at the same time as the
observed data (Brown-Brandl et al. 2005) in Fig. 8,
whereas in Fig. 7 the predicted peak body temperature
occurred 2–3 h prior to the observed data (Brown-
Brandl et al. 2003). The delay in the body temperature
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rise in the observed data is a delayed response to rising
Ta. Finch (1986) found a similar delay in both sweating
and respiration rate as Ta increased, leading to a
delayed rise in Tb. The sun treatments of the Brown-
Brandl et al. (2005) dataset exhibited the same pattern
as did the predictions, which can be attributed to the
solar radiation overpowering the effect of Ta. Both the
rise in solar radiation and Tb have equivalent delays in
relation to the rise in Ta. The data show that the
maximum solar radiation and the maximum Tb occur
at the same time whereas the maximum Ta occurs later
in the day.

CONCLUSION

The sensitivity analyses showed that Thompson model
is primarily linear in its parameters (although highly
nonlinear in time), which results in a few interactions
between parameters. In addition, only the respiration
rate parameters, reference body temperature, sweating
rate parameters, air temperature and the surface area
of animals were important in the model, given the
circumstances tested. The remaining parameters can
be reasonably estimated, but do not require the atten-
tion or precision that must be given to the important
parameters. Both B. indicus and B. taurus had similar
patterns in the sensitivity analyses, although B. indicus
were less sensitive due to their greater tolerance for
heat stress.
Some problems exist in the prediction of body

temperature and improvement requires a more com-
plete dataset, which will provide a better under-
standing of the contribution of the thermal flows both
within the animal and between the animal and its
environment. A helpful experiment to estimate the
sensitive parameters and test the main heat flows in the
model would be one in which skin and body tem-
peratures are measured, in addition to sweating and
respiration rates, respiratory evaporation losses and
long wave radiation fluxes. An updated experiment on
heat flow from the body to the skin (vasodilation)
would allow for estimation of reference body temp-
erature. This experiment should include both
B. indicus and B. taurus under a wide range of tem-
perature conditions, from heat to cold stress. Finally,
an experiment should measure the effect of solar
radiation, measuring the radiation intercepted and
absorbed by the animal and measuring its effect on
both skin and body temperature. The experiments
would also need animal inputs, such as species, Mb,
intake and ME content of the feed.

The heat balance model is an adaptable, mechan-
istic model which can evaluate and help explain the
specific physiological effects of heat stress on the
animal. This model can be a useful tool for designing
experiments, improving animal welfare, mitigating the
detrimental effects of heat stress and improving animal
performance.

Research was supported by the Lyons Fellowship, the
Jastro Shields Award (V.A.T.) and the W. K. Kellogg
Endowment, USDA NIFA Multistate Research Project
NC-1040. We gratefully acknowledge the infrastruc-
ture support of the Department of Animal Science,
College of Agricultural and Environmental Sciences,
the California Agricultural Experiment Station of the
University of California, Davis and Embrapa Cerrados,
Planaltina, Brazil.

REFERENCES

ALLEN, T. (1962). Responses of Zebu, Jersey, and Zebu X
Jersey crossbred heifers to rising temperature, with
particular reference to sweating. Australian Journal of
Agricultural Research 13, 165–179.

BIBBY, J. & TOUTENBURG, H. (1977). Prediction and Improved
Estimation in Linear Models. Chichester: Wiley.

BROWN-BRANDL, T. M., NIENABER, J. A., EIGENBERG, R. A.,
HAHN, G. L. & FREETLY, H. (2003). Thermoregulatory re-
sponses of feeder cattle. Journal of Thermal Biology 28,
149–157.

BROWN-BRANDL, T. M., EIGENBERG, R. A., NIENABER, J. A. &
HAHN, G. L. (2005). Dynamic response indicators of heat
stress in shaded and non-shaded feedlot cattle, Part 1:
analyses of indicators. Biosystems Engineering 90,
451–462.

FINCH, V. A. (1985). Comparison of non-evaporative heat
transfer in different cattle breeds. Australian Journal of
Agricultural Research 36, 497–508.

FINCH, V. A. (1986). Body temperature in beef cattle: its
control and relevance to production in the tropics. Journal
of Animal Science 62, 531–542.

KIBLER, H. H. & YECK, R. G. (1959). Environmental Physiology
and Shelter Engineering with Special Reference to
Domestic Animals L: Vaporization Rates and Heat
Tolerance in Growing Shorthorn, Brahman and Santa
Gertrudis Calves Raised at Constant 50° and 80 °F
Temperatures. Missouri Research Bulletin 701.
Columbia, MO: University of Missouri, College of
Agriculture Agricultural Experiment Station.

MATLAB (2010). Matlab Version 7.8.0. Natick, MA:
MathWorks Inc.

MCARTHUR, A. J. (1987). Thermal interaction between animal
and microclimate: a comprehensive model. Journal of
Theoretical Biology 126, 203–238.

MCGOVERN, R. E. & BRUCE, J. M. (2000). A model of the
thermal balance for cattle in hot conditions. Journal of
Agricultural Engineering Research 77, 81–92.

Evaluation of a thermal balance model for cattle 495



R Development Core Team (2010). R: A Language and
Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

SALTELLI, A., RATTO, M., ANDRES, T., CAMPOLONGO, F.,
CARIBONI, J., GATELLI, D., SAISANA, M. & TARANTOLA, S.
(2008). Global Sensitivity Analysis. The Primer.
Chichester, UK: John Wiley and Sons, Ltd.

SPRINKLE, J. E., HOLLOWAY, J. W., WARRINGTON, B. G.,
ELLIS, W. C., STUTH, J. W., FORBES, T. D. A. & GREENE, L.W.
(2000). Digesta kinetics, energy intake, grazing behavior,
and body temperature of grazing beef cattle differing
in adaptation to heat. Journal of Animal Science 78,
1608–1624.

THOMPSON, V. A., BARIONI, L. G., RUMSEY, T. R., FADEL, J. G.
& SAINZ, R. (in press). The development of a dynamic,

mechanistic, thermal balance model for Bos indicus and
Bos taurus. Journal of Agricultural Science, Cambridge
(in press).

THOMPSON, V. A., FADEL, J. G. & SAINZ, R. D. (2011). Meta-
analysis to predict sweating and respiration rates for Bos
indicus, Bos taurus, and their crossbreds. Journal of Animal
Science 89, 3973–3982.

TURANYI, T. (1990). Sensitivity analysis of complex kinetic
systems – tools and applications. Journal of Mathematical
Chemistry 5, 203–248.

TURNPENNY, J. R., MCARTHUR, A. J., CLARK, J. A. &WATHES, C. M.
(2000). Thermal balance of livestock 1. A parsimoni-
ous model. Agricultural and Forest Meteorology 101,
15–27.

496 V. A. Thompson et al.


