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Abstract. Linear and non-linear models have been extensively utilised for the estimation of net and metabolisable
energy requirements and for the estimation of the efficiencies of utilising dietary energy for maintenance and tissue gain.
In growing animals, biological principles imply that energy retention rate is non-linearly related to the energy intake level
because successive increments in energy intake abovemaintenance result in diminishing returns for tissue energy accretion.
Heat production in growing cattle has been traditionally described by logarithmic regression and exponential models. The
objective of the present study was to develop Bayesian models of energy retention and heat production in growing cattle
using parametric and non-parametric techniques. Parametric models were used to represent models traditionally employed
to describe energy use in growing steers and heifers whereas the non-parametric approach was introduced to describe
energy utilisation while accounting for non-linearities without specifying a particular functional form. The Bayesian
framework was used to incorporate prior knowledge of bioenergetics on tissue retention and heat production and to estimate
net and metabolisable energy requirements (NEM and MEM, respectively), and the partial efficiencies of utilising dietary
metabolisable energy for maintenance (km) and tissue energy gain (kg). The database used for the study consisted of 719
records of indirect calorimetry on steers and non-pregnant, non-lactating heifers. The NEM was substantially larger in
energy retention models (ranged from 0.40 to 0.50 MJ/kg BW0.75.day) than were NEM estimates from heat-production
models (ranged from 0.29 to 0.49 MJ/kg BW0.75.day). Similarly, km was also larger in energy retention models than in heat
production models. These differences are explained by the nature of y-intercepts (NEM) in these two models. Energy
retention models estimate fasting catabolism as the y-intercept, while heat production models estimate fasting heat
production. Conversely, MEM was virtually identical in all models and approximately equal to 0.53 MJ/kg BW0.75.day
in this database.
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Introduction

Nutrient requirement recommendations for livestock are basedon
estimates of the efficiency of dietary energy utilisation for
maintenance and production functions in most feeding
systems. The determination of the animal energy requirement
is also necessary when formulating diets and examining the
environmental impacts of livestock production (Moraes et al.
2012). Body energy retention rate is expected to be non-linearly
related to the energy intake level in growing animals because
successive increments in energy intake abovemaintenance result
in diminishing returns for tissue energy accretion (Blaxter 1980;
Garrett and Johnson 1983). Likewise, the efficiencies of utilising

dietary metabolisable energy (ME) for maintenance and tissue
energy deposition may be different under various feeding
situations. Piecewise and non-linear models have been
frequently used to examine energy deposition in growing
animals and investigate dietary and animal characteristics
associated with efficiencies of utilising dietary energy for
growth (Blaxter and Boyne 1978; France et al. 1989; NRC
2000). For instance, the piecewise linear model uses two linear
functions that intersect at the zero energy retention point tomodel
energy retention as a function of ME intake (NRC 2000).
Alternatively, Blaxter and Boyne (1978) suggested the use of
the Mitscherlich equation for modelling energy retention as a
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function of feed intake in sheep and cattle. This framework
was later used as the basis for the ME system in the United
Kingdom (ARC 1980). However, France et al. (1989) suggested
that the relationship between retained energy (RE) and ME
intake may not behave according to the law of diminishing
returns over all levels of intake. As a consequence, response
functions with diminishing returns may not properly describe
energy retention in various feeding situations and additional
non-linear response functions should also be considered
(France et al. 1989). The choice of model to describe energy
deposition as a function of energy intake seems therefore to
depend on the independent variable chosen to describe energy
intake and on the range of intake level.

Net energy and ME requirements for maintenance (NEM and
MEM, respectively), in growing cattle have been customarily
determined through the measurement or estimation of heat
production (HP, e.g. Lofgreen and Garrett 1968; Tedeschi
et al. 2002; Marcondes et al. 2013). For instance, a linear
regression model relating logarithmic transformed HP and ME
intake was used by Lofgreen and Garrett (1968) to estimate NEM

as the antilog of the model intercept. The logarithmic
transformation was justified by the authors as a more realistic
extrapolation to zero ME intake. Tedeschi et al. (2002) and
Marcondes et al. (2013) chose exponential functions instead
to model HP as a function of ME intake and estimate NEM

and MEM. Non-linear functions have been extensively utilised
for modelling energy utilisation in food production animals
(e.g. France et al. 1989; Kebreab et al. 2003; Strathe et al.
2010). These models are usually selected through the
underlying biological mechanisms and model parameters often
have a biological interpretation. However, energy balance data is
often stratified by clusters, for example, repeated-measures
designs, and meta-analytic studies are frequently adopted and
a mixed model approach is therefore utilised. In the non-linear
mixed-effects model, the marginal likelihood function of the
data, obtained by integrating out the random effects from the
joint density of the data and random effects, usually does not
have a closed form expression (Pinheiro and Bates 2000).
Accordingly, parameters are often estimated by algorithms
with an approximate likelihood function and the choice of the
response function and initial values for the algorithm initialisation
are crucial. Lack of algorithm routine convergence is common
whenmodelling energy utilisation in cattlewith non-linearmixed
models (Kebreab et al. 2003). In contexts such as this one,
simpler non-linear models are preferred and often the choice
of the response function is based on its ability of providing a good
fit to the data rather than the underlying biological principles.
Alternatively, the use of non-parametric techniques when
modelling animal-related responses has increased considerably
over the past two decades. For instance, penalised and B-splines
models have been used in zero-inflated Poisson models in
animal abundance studies (Chiogna and Gaetan 2007), animal
models in genetics (Cantet et al. 2005), longitudinal non-
parametric ANOVA models (Crainiceanu et al. 2005) and
random regression models in genetic analyses of cattle growth
(Meyer 2005). Further, support vector regression was used by
Faridi et al. (2013) to predict theMEcontent of corn for ducks and
neural network models were used by Faridi et al. (2012) to
evaluate egg production in response to dietary nutrient intake

by hens. Non-parametric models often suffer from the lack of
biological interpretation on parameters directly determining the
shape of the response curve. However, the estimation of a non-
parametric response function allows biological information to be
extracted from the curve itself because its shape is largely
determined by the data. For example, the non-parametric curve
can be used to determine the overall shape of the relationship
between two variables and to investigate the presence of
thresholds and change points in the data. Further, the non-
parametric framework naturally accommodates non-linearities
in the data and does not rely on the specification of a particular
functional form describing the relationship between dependent
and independent variables.

In this context, the objective of this study was to develop
Bayesian parametric and non-parametric models for the
investigation of differences in energetic parameters from energy
retention and HP models under varying biological assumptions.
The Bayesian framework naturally accommodates the
hierarchical structure of the data and standard errors of functions
of parameters are directly estimated by the Markov chain Monte
Carlo (MCMC) sampling. The parametric and non-parametric
frameworks can be seen as complementary in the sense that the
non-parametric framework will identify any biological signal
present in the data without imposing any functional form and
suggest the use of a reduced parametric model. Further, the
Bayesian implementation is presented with two distinct data
analysis strategies. The first strategy utilises minimal prior
knowledge in the analysis and the inference is mostly influenced
by the database. The second strategy combines the data at hand
with prior knowledge on bioenergetics through the use of a
Bayesian model with informative prior distributions. Therefore,
for each energy response (RE or HP), parametric and non-
parametric models are fitted with both informative and non-
informative prior distributions.

Materials and methods

As an initial step of the data analysis, the adequacy of non-linear
models proposedbyFrance et al. (1989) andKebreab et al. (2003)
in describing RE as a function of ME intake in this database
was investigated. Models were implemented in a hierarchical
Bayesian framework using the steps described in the following
sections. A variety of prior distributions were examined, ranging
from non-informative flat priors to informative priors (Gelman
et al. 2004). Further, robustmodelling techniqueswere examined
with the use of Student’s t- and double exponential likelihoods
as well as several re-parameterisations of the non-linear response
functions. In all cases, poor chain mixing or lack of convergence
of the MCMC algorithm was observed. The visual inspection
of Fig. 1 suggests that the relationship between RE and ME
intake is not governed by diminishing returns or sigmoidal laws,
therefore, the lack of convergence with non-linear response
functions may be a result of the use of an inappropriate
functional form for this dataset. Further, it is interesting to
notice the relationship between HP and ME intake (Fig. 1)
appears to be roughly linear, suggesting that a linear model
may be a good function to describe these data.

Moreover, bioenergetics research over the past six decades
has substantially increased the knowledge on energy utilisation
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by farm animals. In particular, maintenance requirements
and energetic partial efficiencies have been extensively
examined (e.g. Lofgreen and Garrett 1968; Moe et al. 1972;
France et al. 1989; Baldwin 1995; Strathe et al. 2010) and several
biological principles governing energy utilisation by farm
animals have been established (Baldwin 1995). In this context,
a statistically valid framework, which combines the prior
knowledge on energy utilisation with new data is attractive. In
particular, Strathe et al. (2011) proposed the use of Bayesian
inference for updating the prior knowledge on the state of
nature of energy utilisation by lactating cows with the data at
hand. In the Bayesian setting, the inference is based on the
posterior density, which combines information from the prior
densities and the density of the observed data. Specifically, the
Bayes rule gives that the posterior density is p ujyð Þ ¼ p yjuð Þp uð Þ

p yð Þ ,
where y represents the observed data, u the vector of parameters,
p(y|u) is the density of the data, p(u) is the prior density and
p(y) =

Ð
p(u)p(y|u)du is the marginal density of the data, which

is a constant once the data has been observed. Therefore, the
posterior density is proportional to the product of the density of
the data and the prior, i.e. p(u|y) / p(y|u)p(u). Therefore, the
inference is by definition dependent on prior information
available before the data is observed. The following three
main types of prior distributions were described by Gelman
et al. (2004): (1) informative priors for which a full generative
model for the data is specified and the prior brings substantial
information for the inference, (2) weakly informative priors,
which deliberately utilise less information than usually
available and some prior information constrains the inference,
and (3) non-informative priors forwhich the posterior distribution
is dominated by the new data. In this study, prior distributions for
the energetic parameters were specified using both non-
informative and informative types of prior distribution. In the
first part of the analysis, models were fitted with non-informative
priors for the energetic parameters so the observed data had a
major role in the inference. In the second part of the analysis,
informative priors on energetic parameters were used to combine
prior knowledge of bioenergetics on growing cattle with the data.
In this second approach, estimates of energetic parameters
represented a compromise between information provided by

this dataset and prior knowledge of bioenergetics on growing
cattle.

The database
A database containing 719 energy balance records from heifers
and steers was assembled from 15 studies conducted at the
former USDA Energy Metabolism Unit at Beltsville,
Maryland. Records represent at least four consecutive days of
indirect calorimetry and originated from Holstein, Angus,
Hereford and Angus-Hereford cross steers and non-pregnant,
non-lactating heifers. Animals ranged from 6 to 22 months of
age and records with hormone supplementation or ruminal
infusions were removed from the database. A complete list of
references of individual studies is available in Moraes et al.
(2014) and summary statistics of the database are in Table 1.
A comprehensive description of the experimental procedures
has been reported by Flatt et al. (1958) and Moe et al. (1972).
The data containing RE,ME intake and HP is presented in Fig. 1.
It is important to notice that the data has a hierarchical structure,
such that there are multiple observations on the same animal
although animals are not fully nested within studies since those
were used in multiple studies. The fact that records from this
database are grouped into studies, conducted under different
experimental procedures and biological hypotheses, poses a
major challenge for drawing causality conclusions. A meta-
analytic approach was employed for which study-based
differences in model parameters were estimated through a
mixed model approach. However, studies designed for
different breeds and among heifers and steers were
substantially different and associated differences or similarities
on energy utilisation may therefore be a consequence of
experimental treatments rather than breed and gender-based
differences. Additionally, gender- and breed-based differences
on energy utilisation have been extensively studied over the past
decades (e.g. Frisch and Vercoe 1977; AFRC 1993; NRC 2000;
Tedeschi et al. 2002; CSIRO 2007; Marcondes et al. 2013).
Therefore, data were pooled from the various breeds and two
genders and breed and gender effects on model parameters
were not estimated. However, it is important to note that
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Fig. 1. Retained energy plotted against metabolisable energy (ME) intake (left) and heat production
plotted against ME intake (right). All variables are scaled to kg BW0.75.
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treatment and group differences can be easily accommodated by
the parametric and non-parametric models utilised in this study
(Crainiceanu et al. 2005).

Modelling energy retention
Energy retention was described, as a function of ME intake, by
twomodelling approaches. Thefirst approach utilises a piecewise
linear model for which two lines, which intersect at MEM,
represent the energy mobilisation and deposition below and
above maintenance. The second approach utilises of a non-
parametric model, which describes energy retention by a
smooth non-parametric curve. In this framework, NEM

represents the fasting catabolism (FCAT), which is defined as
the total body energy loss of an animal previously fed at
maintenance (Baldwin 1995). Further, by definition MEM =
FCAT/km where km is the efficiency of utilising dietary ME for
maintenance, i.e. DRE/DME intake from FCAT to MEM. Using
the notation fromBaldwin (1995) the FCAT is equal toHeE+FeE
+ UeE + HwE where HeE is heat loss due to fasting metabolism,
FeE is the endogenous fecal energy, UeE is the endogenous
urinary energy and HwE HP due to waste synthesis. Further,
the efficiency of utilising dietaryME for tissue energy gain (kg) is
the DRE/DME intake aboveMEM.When using informative prior
distributions for energetic parameters, results from Baldwin
(1995) were used to construct an informative prior distribution
for the NEM. In particular, Baldwin (1995) suggested that FCAT
should be approximately 0.34 MJ/kg BW0.75.day and typical km
and MEM values are within an interval of [0.80, 0.95] and [0.36,
0.46] MJ/kg BW0.75.day, respectively. In this context, an
informative prior distribution for the NEM was constructed by
assuming that our prior belief before observing this data dictated
that NEM was 0.34 MJ/kg BW0.75.day with 95% confidence
interval of [0.27, 0.42] MJ/kg BW0.75.day.

Piecewise linear model
A piecewise linear function with an unknown breakpoint

(Toms and Lesperance 2003) was used to estimate

maintenance requirements and energetic efficiencies through
the following hierarchical model:

yijl ¼ b0;ij þ b1;ij xijl þ b2;ij ðxijl � kÞþ þ eijl; ð1Þ
where yijl denote the lth record (l = 1, . . ., nij) of RE (MJ/kg
BW0.75.day) on animal i (i= 1, . . .,A) and study j (j= 1, . . .,B), xijl
is the correspondingME intake (MJ/kgBW0.75.day),b0,ij denotes
the intercept, b1,ij is the slope before the breakpoint and b2,ij is
the change in the slope after the breakpoint for the ith animal and
jth study. Further, k is the unknown breakpoint,(xijk – k)+ =
max(0, xijk – k) and eijl is the error. Energetic parameters are
directly represented by this piecewise linear model, for instance
NEM is represented by the intercept b0,ij, MEM is represented by
the breakpointk, km is represented byb1,ij and kg is represented by
b1,ij + b2,ij as described in Baldwin (1995).

The Bayesian implementation of the model requires the
specification of a probabilistic model for the data and prior
distributions for the unknowns. The implementation is
described in three hierarchical stages for which the first stage
represents a model for the data given the model parameters:

yijl j b0;ij; b1;ij; b2;ij; k; s
2 �

N b0;ij þ b1;ij xijl þ b2;ij ðxijl � kÞþ;s2
� �

;
ð2Þ

where b0,ij, b1,ij and b2,ij are animal- and study-specific
regression coefficients and s2 is the variance. Regression
parameters are represented by uij = (b0,ij, b1,ij, b2,ij)T and
further decomposed into uij = um + ai + gj, where um is the
vector of population parameters, ai is the vector of random
effects associated with animal i and gj is the vector of random
effects associated with study j. In the second stage, prior
distributions for the random effects given their variance
components were specified. Random effects were assumed to
be mutually independent and distributed as:

ai jSa � Nð0;SaÞ; i ¼ 1; . . . ; A

gj jSg � Nð0;SgÞ; j ¼ 1; . . . ; B

(
; ð3Þ

Table 1. Descriptive statistics of the database
BW, the bodyweight; CH4, the daily methane emissions; CP, the dietary crude protein; DEI, the daily digestible
energy intake; DMI, the daily dry matter intake; EE, the dietary ether extract; GEI, the daily gross-energy intake;
Max, themaximumvalue;ME, the dietarymetabolisable energy content;MEI, the dailymetabolisable energy intake;
Min, the minimum value; NDF, the dietary neutral detergent fibre; 1st Qt. and 3rd Qt., the first and third sample

quantiles; RE, the retained energy; s.d., the sample standard deviation

Item Min 1st Qt. Median Mean 3rd Qt. Max s.d.

NDF (% of DM) 13.15 26.76 35.63 39.42 52.17 78.29 16.02
ME (MJ/kg DM) 7.71 10.66 11.33 11.31 12.05 14.28 1.14
CP (% of DM) 10.39 13.34 15.19 15.89 18.13 25.35 3.43
EE (% of DM) 0.89 2.68 3.21 3.48 4.12 7.55 1.22
Age (months) 6 11 13 13.18 15.25 22 3.49
DMI (kg/day) 2.09 4.01 5.01 5.25 6.47 11.12 1.61
BW (kg) 168.20 264.75 314.60 326.95 372.85 630.70 82.19
GEI (MJ/day) 39.47 77.92 98.63 102.80 127.50 210.00 32.02
DEI (MJ/day) 27.74 52.97 65.70 69.60 85.30 151.20 21.25
MEI (MJ/day) 22.06 44.57 55.51 59.17 72.74 133.40 18.67
CH4 (MJ/day) 2.59 4.96 6.11 6.41 7.57 13.60 1.97
RE (MJ/day) –12.06 4.23 8.82 10.60 16.65 42.71 11.29
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where Sa and Sg are covariance matrices of the vectors of
random effects associated with animals and studies,
respectively. In the third stage, prior distributions for the
model parameters were specified. Let Sa = diag{sa0

2 , sa1

2 ,
sa2

2} , Sg = diag{sg0
2 , sg1

2 , sg2
2 }, um = (bm0, bm1, bm2)T and the

prior distributions as follows:

s�2; s�2
a0
; s�2

a1
; s�2

a2
;s�2

g0 ; s
�2
g1 s�2

g2 � Gamð10�3; 10�3Þ
bm0 � Nð0; 106Þ or bm0 � Nð�0:34; 0:0016Þ
bm1; bm2 � Nð0; 106Þ
k � Unifð0:51; 0:63Þ

8>>>><
>>>>:

;

ð4Þ
where Gam(a, b) is the Gamma density with mean = a/b and
variance=a/b2,bm0�N(0,106)when anon-informative priorwas
used for the NEM and bm0 � N(–0.34, 0.0016) when an
informative prior for the NEM was used. Further, Unif(a, b) is
the Uniform density with parameters a and b, which were set as
the lower and upper limits of a 95% credible interval for theMEM

fromaprevious analysis of this database using animals in positive
energy balance.

Non-parametric approach
A non-parametric model was utilised for modelling energy

retention, as a functionofME intake, by representing the response
function with a smooth curve, which directly accommodates
changes in the relationship between RE and ME intake under
various feeding levels. The model is generally described as
follows:

y ¼ mðxÞ þ e; ð5Þ
where y (MJ/kg BW0.75.day) is the RE, x is the ME intake
(MJ/kg BW0.75.day), m is a smooth function describing the
conditional mean of y and e is the error. We estimate m(x) by
spline functions, which are described using the notation from
Ruppert (2002):

mðx; uÞ ¼ b0 þ b1xþ . . . þ bpx
p þ

XK
k¼1

bkðx� kkÞpþ; ð6Þ

where u = (b0, . . . bp, b1, . . . , bk)T, b0, . . . , bp are the regression
coefficients, b1, . . . , bK are the coefficients associated with the
spline bases (x –kk)+p= [max(0, x –kk)]p, and p� 1 andk1< . . .<
kk are the knots or ‘breakpoints’. Equation 6 describes a sequence
of pth degree polynomials tied at the knots to form a continuous
curvewithp–1 continuous derivatives.Additionally,wepropose
the use of penalised splines for which a relatively large number of
knots is specified but parameters b1, . . ., bK are penalised by
shrinking them towards zero (Gurrin et al. 2005). In this context,
specification of knots plays a minor role because smoothing is
governed by the penalty parameter (Wand 2003; Gurrin et al.
2005). Strategies for knot placement and selection have been
extensively examinedbyRuppert (2002). In this study,weuse the
empirical result from Wand (2003) that the number of knots
K ¼ min n

4 ; 35
� �

workswell as a good default rule (n here denotes
the number of observations). The knots are then set at
kk ¼ ðkþ1

Kþ2Þth sample quantile of x (1 � k � K). The number
of observations in the database is 719, therefore, Kwas set to 35.

The non-parametric regression model is extended to
accommodate the hierarchical structure of the data by letting
yijl denote the lth record (l=1, . . ., nij) ofREon animal i (i=1, . . . ,
A) and study j (j = 1, . . ., B) and xijl be the corresponding ME
intake. The model for the data is then defined as:

yijl ¼ f ðxijlÞ þ fiðxijlÞ þ fjðxijlÞ þ eijl; ð7Þ
where f(�) is the overall curve, fi(�) are the deviations from
the overall curve for the ith animal, fj(�) are the deviations
from the overall curve for the jth study and eijl is the error.
Using a first-order basis, the three functions are defined as
follows:

f ðxijlÞ ¼ b0 þ b1xijl þ
PK
k¼1

bkðxijl � kkÞþ

fiðxijlÞ ¼ a0;i þ a1;i xijl þ
PK
k¼1

aikðxijl � kkÞþ

fjðxijlÞ ¼ g0;j þ g1;j xijl þ
PK
k¼1

sjkðxijl � kkÞþ

;

8>>>>>>>><
>>>>>>>>:

ð8Þ

where b0 and b1 are regression coefficients associated with
the overall curve, a0,i and a1,i are random effects associated
with the ith animal, g0,j and g1,j are randomeffects associatedwith
the jth study, bk are parameters associated with the spline basis
(xijl – kk)+ in the overall curve, aik are parameter associated with
the spline basis (xijl – kk)+ in the animal-specific curves and and
sjk are parameters associated with spline basis (xijl – kk)+ in the
study-specific curves and other terms are defined as before.
The mixed model representation of penalised splines was used
and bk, aik and sjk were treated as random effects, which may
be determined by their best linear unbiased predictions (Wand
2003; Crainiceanu et al. 2005). The Bayesian model
implementation is described in three hierarchical stages for
which the first hierarchy specifies a model for the data given
the model parameters:

yijlju; s2 � N f ðxijlÞ þ fiðxijlÞ þ fjðxijlÞ; s2
� �

; ð9Þ
where u = (b0, b1, a0,i, a1,i, g0,j, g1,j, {bk}k = 1

K , {aik}k = 1
K ,

{sjk}k = 1
K )T, s2 denotes the variance and the other terms are

defined as before. The second hierarchy stage specifies prior
distributions for the random effects given their variance
components. It is assumed that random effects are mutually
independent and distributed as follows:

bk js2
b � Nð0;s2

bÞ; k ¼ 1; . . . ;K

a0;ijs2
a0

� Nð0;s2
a0
Þ; i ¼ 1; . . . ;A

a1;ijs2
a1

� Nð0;s2
a1
Þ; i ¼ 1; . . . ;A

g0;jjs2
g0 � Nð0;s2

g0Þ; j ¼ 1; . . . ;B

g1;jjs2
g1 � Nð0;s2

g1Þ; j ¼ 1; . . . ;B

aik js2
a � Nð0;s2

aÞ; i ¼ 1; . . . ;A; k ¼ 1; . . . ;K

sjk js2
s � Nð0;s2

s Þ; j ¼ 1; . . . ;B; k ¼ 1; . . . ;K

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

The third-stage hierarchy specifies prior distributions for the
regression coefficients and variance components as follows:
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bm0 � Nð0; 106Þ or bm0 � Nð�0:34; 0:0016Þ
b1 � Nð0; 106Þ
s�2;s�2

b ;s�2
a0
;s�2

a1
;s�2

g0 ;s
�2
g1 ;s

�2
a ;s�2

s � Gamð10�3; 10�3Þ

8><
>:

ð11Þ
Energetic parameters can be naturally represented through the
overall curve, for instance NEM is defined by the intercept b0. To
estimate the MEM, the ME intake at zero energy retention or the
point at which the overall curve intersects the x-axis needs to be
identified. The use of a bisection method is proposed, which
identifies the x interval at which y becomes positive. The MEM is
thendefinedas theMEintake for thefirst positive energy retention
up to the third decimal digit of precision. The efficiencies km and
kgwere estimated according to France et al. (1989), which defines
the average efficiencies as follows:

�km¼
Ð 0
�NEM

dy

MEM
¼ NEM

MEM

and �kg¼
Ð f ðx¼dMEMÞ
0 dy

ðd�1ÞMEM
¼ f ðx¼ dMEMÞ

ðd�1ÞMEM
;

ð12Þ
where f(x= dMEM) is the value of the overall curve at level (d > 1)
of feeding above MEM.

Modelling heat production
The NEM in growing cattle has been traditionally determined
through the estimation ormeasurement of fasting heat production
(FHP) (NRC 2000). For instance, Lofgreen and Garrett (1968)
regressed the logarithm of HP on the corresponding ME intake
and estimated the NEM as the antilog of the linear regression
intercept. In this study, three approaches are utilised for the
estimation of FHP: the Lofgreen and Garrett (1968) model, a
linear model and a non-parametric approach. In this framework,
NEM represents FHP, which is essentially equal to HeE (Baldwin
1995). By definition NEM from HP models is smaller than the
NEM from energy retention models, which is based on FCAT
(Baldwin 1995). The MEM in the HP models is traditionally
determined as the value at which HP equals the ME intake
(Tedeschi et al. 2002; Marcondes et al. 2013) and the
efficiency by definition km = NEM/MEM. Results from
Lofgreen and Garrett (1968) were used to construct an
informative prior distribution for NEM. In their original study,
Lofgreen and Garrett (1968) stated ‘. . . the heat production of
fasting beef cattle probably lies between 72 and 82 kcal perW0.75

kg with mean value being 77 kcal . . .’ Therefore, an informative
prior distribution for the NEM (measuring FHP) was constructed
by assuming that our prior belief before observing this data
dictated that NEM has a 95% confidence interval of [0.30,
0.34] MJ/kg BW0.75.day centred at 0.32 MJ/kg BW0.75.day.
The Bayesian implementation of all four HP models described
below is virtually the same as the implementation of the energy
retention models.

Lofgreen and Garrett (1968) approach
The relationshipbetween the logarithmofHPandMEintake is

described by following hierarchical model:

log10 yijl
� �¼b0;ij þ b1;ij xijl þ eijl; ð13Þ

where yijl is the lth record (l=1, . . .,nij) ofHP (MJ/kgBW0.75.day)
on animal i (i = 1, . . ., A) and study j (j = 1, . . ., B) and xijl the
corresponding ME intake (MJ/kg BW0.75.day), b0,ij and b1,ij are
the parameters describing the relationship between the
logarithm of HP and ME intake and eijl is the error. In this
framework, 10b0,ij represents the NEM for the ith animal and jth
study. Further, a modified version of the Lofgreen and Garrett
(1968) model is fitted, by using yijl as the dependent variable
rather than its logarithm. This modified version of the model has
the advantage that it can be compared with the other two models
through a model selection criterion. Specifically, the modified
hierarchical model is

yijl¼ 10b0;ij þb1;ijxijl þ eijl; ð14Þ
where yijl is the lth record (l=1, . . .,nij) ofHP (MJ/kgBW0.75.day)
on animal i (i = 1, . . ., A) and study j (j = 1, . . ., B) and xijl the
corresponding ME intake (MJ/kg BW0.75.day), b0,ij and b1,ij are
the parameters describing the relationship between HP and ME
intake and eijl is the error. The NEM, for the ith animal and jth
study, is given by 10b0,ij.

Linear model approach
The visual inspection of Fig. 1 suggests that the relationship

between HP and ME intake may be linear. Therefore, a linear
model for modelling HP as a function of ME intake was
proposed with the following structure:

yijl¼b0;ij þ b1;ijxijl þ eijl; ð15Þ
where yijl is the lth record (l=1, . . .,nij) ofHP (MJ/kgBW0.75.day)
on animal i (i = 1, . . ., A) and study j (j = 1, . . ., B) and xijl the
corresponding ME intake (MJ/kg BW0.75.day), b0,ij and b1,ij are
the parameters describing the linear relationship between HP
and ME intake and eijl is the error. The NEM in this model, for
the ith animal and jth study, is given by b0,ij.

Non-parametric approach
In the last part of the analysis, HP is modelled non-parametrically
with the estimation of a smooth HP curve, which does not rely
on the specification of any parametric form. Specifically, the
hierarchical model is described in Eqn 7 where yijl is the lth
record (l= 1, . . ., nij) of HP (MJ/kgBW0.75.day) on animal i (i= 1,
. . ., A) and study j (j = 1, . . ., B) and xijl the corresponding ME
intake (MJ/kg BW0.75.day). Further, f(�) represents the overall
curve, fi(�) represents the deviations from the overall curve for
the ith animal and fj(�) are the deviations from the overall curve
for the jth study. The curveswere defined by spline functionswith
first-order bases in Eqn 8 where b0 and b1 are regression
coefficients associated with the overall curve, a0,i and a1,i are
random effects associated with the ith animal, g0,j and g1,j are
random effects associated with the jth study, bk are parameters
associated with the spline basis (xijl – kk)+ in the overall curve, aik
are parameter associated with the spline basis (xijl – kk)+ in the
animal-specific curves and and sjk are parameters associated
with spline basis (xijl – kk)+ in the study-specific curves. In this
approach NEM is defined by the intercept b0. The penalised
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splines approach was used to estimate the curves as described in
the previous sections.

Model implementation and comparison
Posterior densities were simulated by MCMC methods in the
statistical software WinBUGS (Lunn et al. 2000). Two chains
with over-dispersed initial values were specified for each
parameter and chain mixing, auto-correlation, posterior
densities and the Gelman–Rubin diagnostics (Gelman and
Rubin 1992) were used to visually assess chain convergence
and determine the required burn-in period. The tests of the
convergence diagnostic and output analysis package (Best
et al. 1995) were used to formally assess chains’ convergence.
Model comparison was performed using deviance information
criteria (DIC) as described by Spiegelhalter et al. (2002). The
DIC is a model comparison tool, which assesses the trade-off
between goodness of fit and model complexity and is
approximately equal to the Akaike’s information criteria in
Gaussian models (Ntzoufras 2009). Formally, the DIC is given
by DIC ¼ Dþ pD, where D ¼ Eqjy½�2log pðyjuÞ� (i.e. the
expected minus twice the log-likelihood) and pD is the penalty
for the number of effective parameters. In practice, reductions of
5 and 10 DIC units often represent a tendency and a substantive
improvement of fit to data, respectively (Spiegelhalter et al.
2002).

As a final step of model evaluation, posterior predictive
distributions were used to check the adequacy of models’
predictions. The posterior predictive distribution is often used
to check if the model is consistent with the data (Gelman et al.
2004) and is given by p(yrep|y) =

Ð
p(yrep|u)p(u|y)du, whereyrep is

defined as the replicated data. The replicated data represent data
which could have been observed or may be observed if the study
is replicated under the samemodel and parameter vector u, which

generated y (Gelman et al. 2004). The posterior predictions can
therefore be interpreted as an average of the conditional
predictions over the posterior distribution of u. A closed form
expression is usually not available for the integral, but an
approximation is provided by the MCMC sampling.

Results and discussion

Energy retention models

Analysis with non-informative priors

Maintenance requirements and energetic efficiencies for both
energy retention models were estimated using a Bayesian
framework with non-informative prior distributions for the
energetic parameters. The prior distributions, therefore, play a
minor role in the inference and the posterior densities are mostly
dominated by the observed data. Estimated maintenance
requirements and energetic efficiencies are in Table 2.
Estimated NEM and MEM values were close in the piecewise
linear and non-parametric models. Specifically, NEM estimates
(FCAT) were 0.50 MJ/kg BW0.75.day in the piecewise linear
model and 0.49 MJ/kg BW0.75.day in the non-parametric
regression model. Furthermore, MEM was 0.52 MJ/kg BW0.75.
day in the piecewise linear model and 0.53 MJ/kg BW0.75.day in
the non-parametric model. The efficiencies were also similar
between the piecewise linear and non-parametric regression
models. Specifically, km was 0.94 and 0.92 in the piecewise
linear and non-parametric models, respectively. Additionally,
kg was 0.54 and 0.61 in the piecewise linear and non-
parametric models respectively. The similarity of the energetic
parameters from both models suggests that the piecewise linear
model is a good representation of the data and the use of a single
breakpoint at the zero energy retention point may be enough to
describe energy retention in this database. These results are
consistent with Lofgreen and Garrett (1968) who suggested

Table 2. Parameter posterior means and standard deviations in parentheses for the piecewise linear and non-
parametric energy retention models, correlation between observed and predicted values and deviance

information criteria (DIC)
ANon-informative represents models fitted using non-informative prior distributions for the energetic parameters and
informative represents models fitted using informative prior distributions for the NEM according to Baldwin (1995).
NEM, the daily net energy requirement for maintenance (MJ/kg BW0.75.day); MEM, the daily metabolisable energy
requirement formaintenance (MJ/kgBW0.75.day); km and kg are the efficiencies of utilising dietaryME formaintenance
and tissue gain; ands2, the error’s variance.Note thatMEM is a parameter only in the piecewise linearmodel. In the non-
parametric model it is determined through the bisection method. The average kg for the non-parametric model was
calculated at 2.45 times MEM level of feeding, which was the maximum feeding level above maintenance in the
database. Further, r(yrep, y) is the correlation between observed values and posterior predictive distributions medians.
DIC is a model comparison tool which trades-off between a measure of goodness of fit and model complexity. Models
with smaller DIC represent a better fit to the data and reductions of 5 and 10 DIC units often represent a tendency and a

substantive improvement of fit to data (Spiegelhalter et al. 2002)

Parameter Piecewise linear Non-parametric
Non-informative Informative Non-informative Informative

NEM 0.50 (0.04) 0.40 (0.03) 0.49 (0.05) 0.40 (0.03)
MEM 0.52 (0.01) 0.53 (0.01) 0.53 0.52
km 0.94 (0.09) 0.77 (0.06) 0.92 (0.09) 0.77 (0.06)
kg 0.54 (0.02) 0.54 (0.03) 0.61 (0.06) 0.60 (0.06)
s2 0.00081 (0.00005) 0.00082 (0.00005) 0.00074 (0.00005) 0.00076 (0.00005)
r(yrep, y) 0.89 0.89 0.90 0.89
DIC –2935.76 –2929.90 –2964.66 –2956.00
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that the partial efficiencies km and kg are roughly constant below
and above maintenance, respectively.

Nevertheless, when comparing both models using an
information criterion, the non-parametric model is preferred
over the piecewise linear model as suggested by the smaller
DIC (Table 2).TheDIC is amodel assessment tool,which favours
models that provide a good fit to the data while penalising for
model complexity (Spiegelhalter et al. 2002). In particular, the
DIC for the non-parametric model was reduced by 29 units
from the piecewise linear model suggesting that the non-
parametric model has a greater ability in describing the RE
data (as expected, due to the greater flexibility of the non-
parametric approach). It is also important to notice that the
non-parametric model provided estimates of NEM and km
slightly smaller than the linear piecewise model but estimates
from both models were substantially larger than the NEM of
0.32 MJ/kg BW0.75.day proposed by the Lofgreen and Garrett
(1968) and the typical km values [0.6, 0.8] for ruminants (France
et al. 1989). This database therefore suggests that NEM

requirements, estimated through energy retention models, are
greater than current NEM estimates from the literature. Further, it
also suggests that dietary ME is used more efficiently for
maintenance purposes than previously reported. Consequently,

estimates of MEM from both models (0.52 and 0.53 MJ/kg
BW0.75.day) were within the range of typical maintenance
requirements from growing cattle [0.46, 0.68] MJ/kg BW0.75.
day (Jenkins and Ferrell 1983; Ferrell and Jenkins 1985; Old and
Garrett 1985; Marcondes et al. 2013).

The fact that NEM and km in these models were substantially
larger than previously reported deserves special consideration.
Twomain reasons forNEMand km larger thanpreviously reported
are characteristics associated with animals in negative energy
balance and the biological interpretation of the y-intercept.
The majority of the records on negative tissue energy balance
(i.e. RE <0) seem to be from younger animals. Specifically, for
the records for which the age of the animals is available, the
sample quantiles of age (in months) for animals where RE < 0 is
(x0.10 = 8, x0.25 = 10, x0.50 = 11, x0.75 = 13.75, x0.90 = 16), where in
this notation Pr(Age � xp) = p. The idea that maintenance
energy requirement per unit of bodyweight changes as the
animal ages is well established (NRC 2000). For instance,
Carstens et al. (1989) reported a 6% decrease in FHP between
cattle of 9 and 20 months. Moreover, an important distinction
between NEM from these models and the ones from the
literature is that the latter are often based on HP models. In
energy retention, NEM represents FCAT while in HP models it
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Fig. 2. Posterior predictive distributions of the piecewise linear (left) and the non-parametric (right)
energy retention models plotted against the metabolisable (ME) intake. All variables are scaled to kg
BW0.75. The line represents the posterior predictions medians and the grey-shaded area is the 95%
credible interval for the predictions. The graph shows (a) the piecewise linear model with non-
informative prior, (b) the non-parametric model with non-informative prior, (c) the piecewise linear
model with informative prior and (d) the non-parametric model with informative prior.
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represents FHP (e.g. Lofgreen and Garrett 1968; Tedeschi et al.
2002;Marcondes et al. 2013). FCAT is equal to HeE + FeE +UeE
+ HwE whereas FHP is essentially HeE (Baldwin 1995),
therefore, FCAT > FHP and NEM from energy retention
models are greater than those estimated by HP models.
Furthermore, by definition km = NEM/MEM, and this partial
efficiency for a given MEM is larger in energy retention
models compared with HP models. In particular, Baldwin
(1995) reported that km is mostly influenced by animal and
diet characteristics and ranges from 0.80 to 0.95 in energy
retention models. These values were in good agreement with
kmestimates from the piecewise linear andnon-parametric energy
retention models in this study (Table 2).

The estimates of the efficiency of utilising ME for gain
(Table 2) from both models (0.54 and 0.61) were similar to
typical kg values from the literature [0.2, 0.8] (France et al.
1989; Baldwin 1995). Various factors affect kg in growing
cattle, for example, composition of the gain (i.e. protein versus
fat) plays a major role in determining kg because fat deposition is
often more energetically efficient than protein deposition. The
database from this study originated from calorimetric studies
for which carcass composition, and consequently tissue gain
composition, was not directly available. Thus, kg was not
factorised into partial efficiencies of fat and protein deposition.
However, the effects of gain composition on kg have been studied
extensively (e.g. Williams and Jenkins 2003; Tedeschi et al.
2004; Marcondes et al. 2013). Further, a comprehensive
examination of additional factors which affect efficiency of
energy utilisation for gain in growing cattle is reported by
Garrett (1980).

Finally, the ability of the models in describing RE in this
database was checked with the use of posterior predictive

distributions. In particular, the correlations between observed
values and posterior predictions were 0.89 and 0.90 for the
piecewise linear and non-parametric models suggesting that
both models are reasonably consistent with the data. Further,
posterior predictions plotted against ME intake (Fig. 2) suggest
good agreement between observed RE and posterior predictions.
Posterior means of parameters from each energy retention model
and variance components as well as their 95% credible intervals
are in Table 3.

Analysis with informative prior for NEM
The same energy retention models were fitted with the

specification of an informative prior distribution for NEM. In
this framework the data was used to update the prior knowledge
on energetic parameters and the inference was based on the
posterior density, which contains substantial prior knowledge
on NEM. Maintenance requirements and partial efficiencies
estimated in these models are in Table 2. Estimates of MEM

and kg were practically unchanged with the specification of an
informative prior distribution for NEM and were within the range
of typical values reported in the literature. However, NEM and km
for the piecewise linear and non-parametric models were
substantially smaller than the ones estimated when using a
non-informative prior distribution for NEM (Table 2).
Comparing these models with the ones fitted using a non-
informative prior distribution through the information criterion
showed that both models provided a worse fit to the data as
suggested by larger DIC for the piecewise linearmodel (–2936 vs
–2930) and for the non-parametric model (–2965 vs –2956)
(Table 2). Furthermore, the plots of posterior predictions and
observed values against ME intake (Fig. 2) suggested that RE

Table 3. Posterior means and 95% credible intervals for parameters estimated in the piecewise linear and non-
parametric energy retention models

Non-informative represents models fitted using non-informative prior distributions for the energetic parameters and informative
represents models fitted using informative prior distributions for the NEM according to Baldwin (1995). b0, b1 and b2 are the
parameters of the energy retention models describing the relationship between retained energy and metabolisable energy intake,
k is the breakpoint from the piecewise linear model, sa0

2 , sa1

2 and sa2

2 are variance components associated with animal random
effects, sg0

2 , sg1
2 and sg2

2 are variance components associated with study random effects, sb
2, sa

2 and ss
2 are variance components

associated with random effects of spline bases in the non-parametric model and s2 is the error’s variance

Parameter Piecewise linear Non-parametric
Non-informative Informative Non-informative Informative

b0 –0.50 (–0.60, –0.40) –0.40 (–0.46, –0.34) –0.49 (–0.60, –0.39) –0.40 (–0.46, –0.34)
b1 0.94 (0.76, 1.13) 0.77 (0.65, 0.89) 0.95 (0.75, 1.16) 0.78 (0.65, 0.92)
b2 –0.40 (–0.60, –0.21) –0.23 (–0.36, –0.09) – –

k 0.52 (0.51, 0.54) 0.53 (0.51, 0.56) – –

sa0

2 0.0004 (0.0002, 0.0006) 0.0004 (0.0002, 0.0006) 0.0004 (0.0002, 0.0006) 0.0004 (0.0002, 0.0006)

sa1

2 0.0003 (0.0002, 0.0006) 0.0003 (0.0002, 0.0006) 0.0003 (0.0001, 0.0006) 0.0003 (0.0001, 0.0006)

sa2

2 0.0006 (0.0002, 0.0012) 0.0006 (0.0002, 0.0013) – –

sg0
2 0.0035 (0.0012, 0.0087) 0.0033 (0.0010, 0.0081) 0.0024 (0.0006, 0.0060) 0.0025 (0.0006, 0.0063)

sg1
2 0.0019 (0.0003, 0.0065) 0.0017 (0.0003, 0.0059) 0.0018 (0.0003, 0.0066) 0.0019 (0.0003, 0.0069)

sg2
2 0.0076 (0.0011, 0.0225) 0.0076 (0.0011, 0.0231) – –

sb
2

– – 0.0139 (0.0024, 0.0426) 0.0094 (0.0014, 0.0311)

sa
2 – – 0.0001 (0.00005, 0.0002) 0.0001 (0.0001, 0.0002)

ss
2 – – 0.0021 (0.0005, 0.0057) 0.0020 (0.0005, 0.0054)

s2 0.0008 (0.0007, 0.0009) 0.0008 (0.0007, 0.0009) 0.0008 (0.0007, 0.0009) 0.0008 (0.0007, 0.0009)
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fitted curve regularly over-predicted RE at ME intake below
MEM when compared with models containing non-informative
priors. More specifically, the majority of the RE observations
lie below the predicted curve for ME intake ranging from 0.4
to 0.5 MJ/kg BW0.75.day [plots (c) and (d) in Fig. 2], suggesting
that the fitted models predicted RE values consistently greater
than observed at this range of ME intake. Therefore, the cost of
using prior knowledge was, on average, over-prediction of RE
at lower levels of ME intake. This suggests that the RE, below
MEM, may be over-predicted, resulting in an estimated NEM that
is on average smaller than suggested by these data. However,
the use of an informative prior distribution provides estimates of
energetic parameters for the nutritionist who prefers to use a
compromised estimate of energetic parameters from this
database and prior knowledge of bioenergetics research.
Posterior means of parameters from each energy retention
model, with informative prior distribution for NEM, and
variance components as well as their 95% credible intervals
are given in Table 3.

Heat production models

Analysis with non-informative priors

Four models were used to describe HP with the use of non-
informative prior distributions for the energetic parameters. The
first model is the one proposed by Lofgreen and Garrett (1968),
which models the logarithm of HP as a linear function of the ME
intake. The NEM estimated under this model was 0.36 MJ/kg
BW0.75.day with 95% credible interval [0.33, 0.40] MJ/kg
BW0.75.day. This credible interval does not contain the 0.32
MJ/kg BW0.75.day NEM from Lofgreen and Garrett (1968),
suggesting that the estimate NEM from the logarithmic model
is larger than previously proposed by the same authors. However,
it should be noted that when plotting the posterior predictions
and observed values as a function of ME intake (Fig. 3), the
logarithmic transformed HP deviate considerably from linearity,
particularly at lower ME intakes. Therefore, a linear model may
not be suitable for the logarithmic transformed data or a
logarithmic transformation may not be necessary to describe
this dataset with a linear response function.

In this context, three other models were used to describe HP
as a function of ME intake for which NEM estimates are in
Table 4. As expected, the estimate from the modified Lofgreen

and Garrett model of 0.37 MJ/kg BW0.75.day was practically the
same as the estimate from the logarithmic regression. The NEM

in the linear model was smaller than the one from the modified
Lofgreen and Garrett model (0.29 MJ/kg BW0.75.day). In
particular, the 95% credible interval [0.25, 0.33] MJ/kg
BW0.75.day contained the NEM of 0.32 MJ/kg BW0.75.day
proposed by Lofgreen and Garrett (1968) but does not contain
the NEM estimates from the logarithmic regression in this
database. The NEM estimate from the non-parametric model,
was substantially larger than estimates from the other HPmodels
(0.49 MJ/kg BW0.75.day). Its 95% credible interval [0.39, 0.61]
MJ/kgBW0.75.daydidnot include theNEMproposedbyLofgreen
andGarrett (1968) and fromanyof the otherHPmodels utilised in
our study.

Comparison of models using the DIC (Table 4) showed that
thenon-parametricmodel had the smallestDIC (–2962), followed
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Fig. 3. Posterior predictive distributions of the Lofgreen and Garrett (1968)
heat production model plotted as a function of metabolisable energy (ME)
intake. All variables are scaled to kg BW0.75. The line represents the posterior
median and the grey-shaded area is the 95% credible interval for the
predictions. Note that non-informative prior distributions were used in this
analysis and the estimated NEM was 0.36 (MJ/kg BW0.75).

Table 4. Parameter posterior means and standard deviations in parentheses for the modified Lofgreen and Garrett (L and G), linear and non-
parametric heat production models, correlation between observed and predicted values and deviance information criteria (DIC)

Non-informative represents models fitted using non-informative prior distributions for the energetic parameters and informative represents models fitted using
informativeprior distributions for theNEMaccording toLofgreenandGarrett (1968).NEM, thedailynet energy requirement formaintenance (MJ/kgBW0.75.day);
s2, the error’s variance; r(yrep, y), the correlation between observed values and posterior predictive distributions medians; DIC, a model comparison tool, which
trades-off between a measure of goodness of fit and model complexity. Models with smaller DIC represent a better fit to the data and reductions of 5 and 10 DIC

units often represent a tendency and a substantive improvement of fit to data (Spiegelhalter et al. 2002)

Parameter Modified L and G Linear Non-parametric
Non-informative Informative Non-informative Informative Non-informative Informative

NEM 0.37 (0.02) 0.34 (0.01) 0.29 (0.02) 0.31 (0.01) 0.49 (0.05) 0.33 (0.01)
s2 0.00088

(0.00005)
0.00089 (0.00005) 0.00088

(0.00005)
0.00087
(0.00005)

0.00075 (0.00005) 0.00077 (0.00005)

r(yrep, y) 0.89 0.89 0.89 0.89 0.90 0.90
DIC –2878.01 –2876.57 –2893.30 –2898.52 –2962.00 –2945.60
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by the linear model (–2893) and lastly the modified Lofgreen
and Garrett model (–2878). Therefore, the DIC suggests that the
non-parametric model was the best choice although the non-
parametric model, by design, has a greater ability to fit to the
data. Consequently, the DIC in the non-parametric model is
expected to be substantially smaller than in the parametric
models because of its greater flexibility even though it is
expected to be penalised more severely for model complexity.
Furthermore, the visual inspection of posterior predictions
plotted as a function of ME intake (Fig. 4) revealed the
principles behind each HP curve to extrapolate to the point of
zero ME intake. These principles may be used to select which
NEM estimate should be used based on biological grounds. The
modified Lofgreen and Garrett model utilises of a logarithmic
transformation as a more realistic manner to extrapolate to the
point on the zero ME intake (Lofgreen and Garrett 1968). The
linear HP model utilises a linear relationship between HP and
ME intake, which is assumed to be the same over all levels of
ME intake, to extrapolate to zeroME intake. The non-parametric
HP model utilises a linear relationship of HP and ME intake,
which is assumed to be the same on the neighbourhood of the
minimumME intake, to extrapolate to zero ME intake. The span
of the neighbourhood is determined by the curve first breakpoint,
which was specified according to the quantiles of the data, as
described in the previous sections. The relationship between HP

and ME intake seemed to be roughly linear over all levels of
intake in this database (Fig. 1). Further, the NEM estimate from
the linearmodel (0.29MJ/kgBW0.75.day)was in good agreement
with FHP reported by Lofgreen and Garrett (1968) and Baldwin
(1995). Therefore, it can be suggested that NEM estimated by
FHP in this database was 0.29 MJ/kg BW0.75.day with a 95%
credible interval [0.25, 0.33]. For this model, it is easy to show
thatMEM= b0/(1 – b1) and km = (1 –b1) where b0 and b1 were the
parameters from Eqn 15. Consequently, MEM was 0.53 MJ/kg
BW0.75.day with 95% credible interval [0.47, 0.60] and km was
equal to 0.54 with 95% credible interval [0.50, 0.58]. Therefore,
although NEM and km were substantially greater in RE models
than in HP models, the MEM estimates are virtually identical
between the two approaches. Lastly, the posterior predictive
distributions indicated that all models were reasonably
consistent with the data, as suggested by the large correlations
between posterior predictions and observed values (r(yrep, y) �
0.89). Posterior means of parameters from each HP model
and variance components as well as their 95% credible
intervals are in Table 5.

Analysis with informative priors for NEM
The same HP models of the previous section were fitted with

the use of an informative prior distribution for the NEM. In
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Fig. 4. Posterior predictive distributions of the heat production models plotted as a function of ME intake. All variables are scaled to kg BW0.75.
The line represents the posterior predictions medians and the grey-shaded area is the 95% credible interval for the predictions. The graph shows
(a) the modified Lofgreen and Garrett (1968) model with non-informative prior, (b) the linear model with non-informative prior, (c) the non-
parametric model with non-informative prior, (d) the modified Lofgreen and Garrett (1968) model with informative prior, (e) the linear model with
informative prior and (f) the non-parametric model with informative prior.
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particular, NEM (FHP) was assumed to follow a Gaussian
distribution with mean 0.32 MJ/kg BW0.75.day and standard
deviation 0.01. This created the [0.30, 0.34] MJ/kg BW0.75.
day 95% confidence interval for NEM as suggested by results
from Lofgreen and Garrett (1968). NEM estimates for all models
(Table 4) were in good agreement with those proposed by
Lofgreen and Garrett (1968). Comparison of these models
with the corresponding models fitted with non-informative
prior distributions, suggested that the ability of fitting the data
were not altered with the use of informative priors in the
modified Lofgreen and Garrett and the linear models
(Table 4). In particular the DIC were similar for the modified
Lofgreen and Garrett model (–2877 vs –2878) and for the linear
HP model (–2899 vs –2893). However, for the non-parametric
model the inclusion of prior information decreased the ability of
the model in fitting the data as shown by substantial increase in
the DIC (–2946 vs –2962).

Posterior predictions of HP plotted against ME intake (Fig. 4)
suggest that HP is mostly under-predicted by the modified
Lofgreen and Garrett model when informative priors for the
NEM are specified [plot (d) Fig. 4]. The linear HP model
seems to slightly over-predict HP, as most of the observations
fall below the fitted curve [plot (e) Fig. 4]. The non-parametric
model, when compared with the non-parametric model with
non-informative prior, seems to have a steeper slope at the
neighbourhood of the minimum ME intake resulting in a
smaller intercept and consequently NEM. In summary, the use
of prior information on the NEMwhen fitting HPmodels reduced
the ability of the parametric models in describing the data as

shown by the posterior predictive distributions. Further, in the
non-parametric HP model the DIC increased substantially, when
including prior information on NEM. The estimates from these
models, however, provide energetic parameters that compromise
between information provided by this database and prior
knowledge of bioenergetics on growing cattle. Posterior means
of parameters from each HP model and variance components as
well as their 95% credible intervals are given in Table 5.

Conclusions

Maintenance requirements and partial efficiencies of utilising
dietary ME were estimated in various models with different
strategies in specifying prior distributions and also with
varying energy responses (RE vs HP). Biological principles
associated with each model differ; consequently estimates of
NEM and km were spread over a wide range. In particular, two
main classes of models were fitted: energy retention and HP
models. For each class, Bayesian models were fitted with the use
of informative or non-informative prior distributions. With the
use of non-informative prior distributions, the inference is mostly
influenced by the data while with the use of informative prior
distributions prior knowledge on energetic parameters has a
substantial influence on maintenance and efficiency estimates.
In particular, when usingHPmodels, NEM and km estimates were
substantially smaller than when using RE models. The km from
the energy retention models ranged from 0.77 to 0.94 whereas it
was 0.54 in theHPmodel. These differencesmay be explained by
the fact that in RE models NEM represents FCAT while in HP

Table 5. Posterior means and 95% credible intervals for parameters estimated in the modified Lofgreen and Garrett (L and G), linear and non-
parametric heat production models

Non-informative represents models fitted using non-informative prior distributions for the energetic parameters and informative represents models fitted
using informative prior distributions for the NEM according to Lofgreen and Garrett (1968). b0 and b1 are the parameters from the heat production models
describing the relationship between heat production and metabolisable energy intake. sa0

2 and sa1

2 are the variance components associated with animal random
effects, sg0

2 and sg1
2 are variance components associated with study random effects, sb

2, sa
2, ss

2 are variance components of the random effects associated with
the spline bases in the non-parametric model and s2 is the error’s variance

Parameter Modified L and G Linear Non-parametric
Non-informative Informative Non-informative Informative Non-informative Informative

b0 –0.43
(–0.47, –0.39)

–0.47
(–0.50, –0.45)

0.29
(0.25, 0.33)

0.31
(0.29, 0.33)

0.49
(0.39, 0.61)

0.33
(0.31, 0.35)

b1 0.30
(0.26, 0.33)

0.31
(0.27, 0.34)

0.46
(0.43, 0.49)

0.45 (0.41, 0.49) 0.04
(–0.19, 0.25)

0.35
(0.27, 0.42)

sa0

2 0.0002
(0.0001, 0.0003)

0.0002
(0.0001, 0.0003)

0.0004
(0.0002, 0.0006)

0.0004
(0.0002, 0.0006)

0.0004
(0.0002, 0.0006)

0.0004
(0.0002, 0.0006)

sa1

2 0.0002
(0.0001, 0.0003)

0.0002(0.0001, 0.0003) 0.0003
(0.0002, 0.0006)

0.0003
(0.0002, 0.0006)

0.0003
(0.0001, 0.0006)

0.0003
(0.0001, 0.0006)

sg0
2 0.0054

(0.0018, 0.0131)
0.0069

(0.0020, 0.0174)
0.0032

(0.0010, 0.0090)
0.0044

(0.0015, 0.0107)
0.0025

(0.0007, 0.0063)
0.0026

(0.0007, 0.0071)
sg1

2 0.0040
(0.0010, 0.0106)

0.0039
(0.0010, 0.0104)

0.0022
(0.0004, 0.0073)

0.0031
(0.0006, 0.0094)

0.0018
(0.0003, 0.0064)

0.0020
(0.0003, 0.0069)

sb
2 – – – – 0.0162

(0.0030, 0.0532)
0.0061

(0.0008, 0.0225)
sa

2
– – – – 0.0001

(0.0001, 0.0002)
0.0001

(0.0001, 0.0002)
ss

2 – – – – 0.0020
(0.0005, 0.0057)

0.0021
(0.0005, 0.0060)

s2 0.0009
(0.0008, 0.0010)

0.0009
(0.0008, 0.0010)

0.0009
(0.0008, 0.0010)

0.0009
(0.0008, 0.0010)

0.0007
(0.0007, 0.0008)

0.0008
(0.0007, 0.0009)
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models it represents FHP. Further, HP seems to be well
explained by a linear function of ME intake in this database
and the MEM from this HP model was similar to the ones from
RE models (MEM = 0.53 MJ/kg BW0.75.day). Estimates of NEM

from HP models ranged from 0.29 to 0.49 MJ/kg BW0.75.day.
The NEM from the linear HPmodel ranged from 0.29 to 0.31MJ/
kg BW0.75.day and due to the good ability of this model in
describing this database, it is suggested that FHP in heifers
and steers in this database was 0.29 MJ/kg BW0.75.day.
Further, NEM estimates in the energy retention models ranged
from 0.40 to 0.50 MJ/kg BW0.75.day, suggesting that the FCAT
in the heifers and steers in this database is within this range. The
kg was slightly greater in the non-parametric model when
compared with the piecewise linear model but was not
substantially affected when prior information was included in
the Bayesian model. In summary, MEM was similar among
models; NEM and km were larger in energy retention models
because of biological principles associated with energetic
calculations. Finally, introducing prior information on the
NEM generally reduced the ability of the models in describing
the data but provided estimates of energetic parameters that were
a compromise between information provided by this database
and previous knowledge on energy utilisation by growing cattle.
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