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Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step to-
ward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of
OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regressionmodels
and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1.
Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished
study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in
white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (inde-
pendent variable) and specific growth rate (% bodyweight increase per day; dependent variable)was used to es-
timate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and
quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted co-
efficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed
to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-
line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and
the three sets of estimated OFRs obtained by these models were used in objective 2.
Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential
modelwith a constant, and a bi-exponentialmodel,werefitted to each set of the 19 estimatedOFRs against trans-
formed initial body weights. A power function model was also fitted to the estimated OFRs against untrans-
formed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1.
Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line
model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight
broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-
exponential regressionmodel emerged as themost favorable one. As a result, the bi-exponentialmodel equation.

OFR % body weight per dayð Þ ¼ 0:00344 �0:0123ð Þ e−5:684 �2:309ð Þ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
body weight

p
Þ þ 8:695 �0:606ð Þ e−0:549 �0:065ð Þ lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
body weight

p
Þ

obtainedbyfitting the estimatedOFRs derived from the quadratic broken-linemodel analysis, can be used to pre-
dict the OFR for white sturgeon from about 0.05 g to 800 g.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

White sturgeon are a commercially important aquaculture species
providing meat and caviar for human consumption, and France, Italy,
and the USA are the main producers around the world. The total
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quantities of meat and caviar produced by these countries in 1996
were recorded as approximately 600 t and 1 t, respectively (Bronzi
et al., 1999). Estimates of 2012 production for sturgeon aquaculture in
the USA alone were approximately 1350 t of meat and between 15
and 20 t of caviar. The majority of this production came from the
white sturgeon, 95% fromCalifornia (F. S. Conte, University of California,
Davis, CA, USA; personal communication).

Estimation of optimum feeding rate (OFR; % body weight per day)
is an important component for the success of aquaculture operations
because feeding rate, water temperature, and fish size are three critical
elements for fish growth (Brett and Groves, 1979). Cui andHung (1995)
developed a prototype feedingmodel to provideOFR forwhite sturgeon
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from 50 g to 1000 g. However, the prototype model was developed on
the basis of the outcomes of analysis of variance (ANOVA) andmultiple
range tests, assuming that theOFR is estimated as theminimum feeding
rate that results in a response which is not significantly different from
the maximum response. Generally, growth response to feeding rate is
continuous, in that the response increases with increasing feeding rate
up to a peak and then it plateaus at the feeding rate beyond the peak.
Furthermore, the responses to nutrient or feeding levels show fairly
similar patterns.

In his critique, Shearer (2000) stated that it is inappropriate to use
the ANOVA and multiple range tests to determine optimum nutrient
levels because the nutrient levels are treated as discrete rather than
continuous. Shearer also provided a good example of the use of those
statistical analyses giving less accurate estimates compared to the appli-
cation of a regression model such as a second-order polynomial curve
for the estimation of optimum nutrient levels. In order to find a more
accurate estimate than the ANOVA and multiple range test yield,
many researchers have commonly used regression models, such as
broken-line and quadratic (also called second-order polynomial)
models accounting for dose–response relationships (Pesti et al., 2009;
Robbins et al., 1979, 2006; Shearer, 2000; Zeitoun et al., 1976). The
broken-line model can be described as a linear line or a quadratic as-
cending line with either an ascending line, a plateau line, or a descend-
ing line, which represents the dose–response relationship between
nutrient levels (or feeding rate) and growth. A breakpoint between
the two lines indicates the optimum nutrient requirement or the OFR.
The quadratic model is represented as a symmetric parabola having a
unique maximum point which suggests the optimum nutrient require-
ment or the OFR that produces themaximumgrowth. However, a single
model application for the estimation of OFR may not provide a best
estimate because the design for that particular experiment and the
resulting variations in the response can contribute to the selection of
an inappropriate model (Shearer, 2000). In addition, the prototype
model by Cui andHung (1995) does not provideOFR forwhite sturgeon
smaller than 50 g. Thus, testing various regression models is appropri-
ate in order to select the best-fit model for the estimation of OFR.

Therefore, the objectives of this study were 1) the estimation of OFR
for 19 datasets with different initial body weights by applying broken-
line and quadratic regression models and 2) the development of an
OFR prediction model that can predict OFR for white sturgeon from
about 0.05 g to 800 g using the 19 estimated OFRs from objective 1.

2. Materials and methods

2.1. Description of dataset

Nineteen datasets were obtained from five published (De Riu
et al., 2012; Deng et al., 2003; Hung and Lutes, 1987; Hung et al.,
1993a, 1995) studies and one unpublished study, whichwere carried
out to evaluate the effects of feeding rate on growth performance in
white sturgeon of initial body weights varying from 0.05 g to 764 g.
All the studies were carried out by the same laboratory (Dr. Silas
Hung, Department of Animal Science, University of California, Davis,
CA, USA) and at the same facility (the Center for Aquatic Biology and
Aquaculture, University of California, Davis, CA, USA) except the Dataset
19 (a growth trial was performed at a local commercial farm; The Fish-
ery, Galt, California, USA). The datasets, including initial body weight
(weight class), number of replications, feeding rate (independent vari-
able), and specific growth rate (SGR; % body weight increase per day)
corresponding to the feeding rate (dependent variable) are listed in
Table 1. The initial body weight was the average weight of the fish in
all tanks when the growth trial began. The number of replications
was the number of tanks assigned to each feeding rate. The feeding
rate (% body weight per day) was the treatment tested for the evalua-
tion of its effects on SGR. The SGRwas the growth response at each feed-
ing rate, calculated from the equation, 100× (ln(FBW)− ln(IBW)) / days
of feeding, where the FBW and IBW were the average final and initial
body weights, respectively. The water temperature and the feed com-
positions used for the experiments are described in Table 1. In most of
the experiments, continuous automatic feeders were used except the
one experiment (Dataset 19) where a demand feeder was used. Other
experimental conditions such as water quality (e.g. flow rate, total am-
monia, dissolved oxygen, pH, etc.) and tank system, affecting growth
performance can be found in the references as indicated in Table 1.

2.2. Estimation of OFR for the 19 datasets (objective 1)

One-slope straight broken-line (One-slope BL), two-slope straight
broken-line (Two-slope BL), quadratic broken-line (Quadratic BL), and
quadratic (Quadratic) models are common regression models used to
estimate optimum nutrient levels or feeding rates. The functional equa-
tion forms and the graphical illustrations of the models are shown in
Table 2 and Fig. 1, respectively. A brief description of each model is
given here.

The One-slope BL model (Equation [1] and Fig. 1[A]) represents a
single breakpoint which is the intersection of a positive slope line and
a plateau line. The breakpoint is the OFR where SGR is at a maximum.

The Two-slope BL model (Equation [2] and Fig. 1[B]) represents a
single breakpoint which is the intersection of a positive slope line and
a positive or a negative slope line. The breakpoint is the OFR where
SGR is at a maximum.

The Quadratic BL model (Equation [3] and Fig. 1[C]) represents a
single breakpoint which is the intersection of a quadratic line and a
plateau line. The breakpoint is the OFR where SGR is at a maximum.

The Quadratic model (Equation [4] and Fig. 1[D]) is a second-order
polynomial where the OFR is the vertex of the polynomial curve.

The statistical model for the ith SGR (yi) was stated as follows:

yi ¼ f θ; xið Þ þ ei

where xi was the ith feeding rate and ei was an error term, assumed to
have amean of zero and a variance ofσ2 (assumption of variance homo-
geneity was evaluated using the Levene’s test (p N 0.05; Ritz and
Streibig, 2008) in all but one dataset (Dataset 19; p = 0.0406); the
Dataset 19 was included in the datasets for the development of OFR
model because this probabilitywas sufficiently close to 0.05). The vector
θ was the functional parameters as described in Table 2.

Estimation of OFR for each datasetwas performed through the appli-
cation of the One-slope BL, Two-slope BL, and Quadratic BL models
using a nls (nonlinear least-squares) function and of the Quadratic
model using a lm (linearmodel) function, located in the standard library
of R 3.0.1 (R Development Core Team, 2013). The R codes for fitting each
model to the 19 datasets are provided in Supplementary Material.

To produce a criterion for the comparisons of model performance on
OFR estimation for each dataset, the adjusted coefficient of correlation
(R2

adj), Akaike information criterion (AIC), and corrected AIC (AICc)
were calculated as follows:

R2
adj ¼ 1−MSE

MST
¼ 1− SSE= n−k−1ð Þ

SST= n−1ð Þ

AIC ¼ −2ln Lð Þ þ 2k

AICc ¼ −2ln Lð Þ þ 2nk
n−k−1

¼ AIC þ 2k kþ 1ð Þ
n−k−1

where SSE and SST are residual sum of squares and total sum of squares
corrected for the mean, respectively, n is the total number of observa-
tions, k is the number of parameters, and L is the maximum of the like-
lihood function. All three aforementioned criteria balance goodness-of-
fit and model complexity to different extents. AICc penalizes model



Table 1
List of the 19 datasets obtained from the five published studies and the one unpublished study used for the estimation of optimum feeding rate (% body weight per day).

Dataset
number

Source IBW1(g) Number of
replications2

FR3 (%) SGR4 (%) IE5 (KJ) CP6 (%) CL7 (%) Temperature8

(°C)

1 Deng et al. (2003) 0.05 4 10, 20, 30, 40, 50, 60 7.5, 9.9, 11.0, 11.2, 11.1, 11.7 19.1 52.5 10.3 19.2
2 Deng et al. (2003) 0.09 4 5, 10, 15, 20, 25, 30 5.3, 9.6, 11.5, 12.1, 12.1, 13.0 19.1 52.5 10.3 19.3
3 Deng et al. (2003) 0.18 4 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 2.0, 5.5, 6.8, 9.2, 10.1, 10.8 19.1 52.5 10.3 19.3
4 Deng et al. (2003) 0.37 4 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 3.9, 7.6, 8.9, 9.2, 8.9, 9.6 19.3 50.0 12.9 19.0
5 De Riu et al. (2012) 2.8 4 3, 4, 5, 6, 7, 8 4.5, 5.8, 6.4, 7.1, 7.6, 7.6 19.0 48.8 12.3 18.0
6 De Riu et al. (2012) 4.5 4 2, 3, 4, 5, 6, 7 2.7, 4.3, 5.2, 6.3, 6.4, 6.2 19.0 48.8 12.3 18.2
7 De Riu et al. (2012) 8.6 4 1, 2, 3, 4, 5, 6 0.9, 2.9, 4.3, 5.5, 6.0, 6.1 19.0 48.8 12.3 18.0
8 De Riu et al. (2012) 10.0 4 1, 2, 3, 4, 5, 6 0.6, 2.6, 3.9, 4.8, 5.6, 5.6 19.0 48.8 12.3 18.0
9 Hung and Lutes (1987) 27.9 3 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 0.0, 1.0, 1.6, 2.2, 2.5, 2.6, 2.9, 2.8 21.2 43.0 16.0 20.2
10 Hung and Lutes (1987) 37.0 3 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 0.5, 1.1, 1.8, 2.3, 2.4, 2.7, 2.2, 2.3 21.2 43.0 16.0 20.2
11 Hung and Lutes (1987) 49.0 3 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 0.3, 1.1, 1.5, 2.0, 2.2, 1.9, 1.7, 1.7 21.2 43.0 16.0 20.2
12 Hung and Lutes (1987) 62.0 3 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 0.5, 1.1, 1.6, 1.9, 1.6, 1.1, 1.1, 1.4 21.2 43.0 16.0 20.2
13 Hung et al. (1993a) 30.5 3 2.0, 2.5, 3.0, 3.5 2.2, 2.5, 2.7, 2.8 20.5 40.9 13.8 23.1
14 Unpublished data 359.9 3 0.4, 0.8, 1.2, 1.6, 2.0 0, 0.9, 1.2, 1.5, 1.7 21.9 41.8 19.0 18.0
15 Unpublished data 418.8 3 0.4, 0.8, 1.2, 1.6, 2.0 0.4, 0.7, 1.0, 1.0, 1.0 21.9 41.8 19.0 17.9
16 Unpublished data 470.4 3 0.4, 0.8, 1.2, 1.6, 2.0 0.6, 1.1, 1.1, 1.2, 1.1 21.9 41.8 19.0 18.0
17 Unpublished data 543.5 3 0.4, 0.8, 1.2, 1.6, 2.0 0.6, 1.0, 1.0, 1.0, 0.9 21.9 41.8 19.0 18.1
18 Unpublished data 616.7 3 0.4, 0.8, 1.2, 1.6, 2.0 0.5, 0.9, 0.9, 0.9, 0.9 21.9 41.8 19.0 18.3
19 Hung et al. (1995) 764.0 3 0.5, 0.9, 1.3, 1.7 0.3, 0.6, 0.8, 0.7 N/A9 44.0 15.0 22.4

1 Initial body weight: The average initial weight of fish in all tanks when the growth trial began.
2 A number of tanks assigned to each feeding rate.
3 Feeding rate: % body weight per day.
4 Specific growth rate: % body weight increase per day calculated from the equation, 100 × (ln(FBW) − ln(IBW))/ days of feeding, where the FBW and IBWwere the average final and

initial body weights. The values in the SGR column represented the average SGR of the replicates corresponding to the respective feeding rate shown in the FR column.
5 Intake energy: The energy content in the diet as fed was calculated using the following values: crude protein 23.6 kJ/g, crude lipid 39.3 kJ/g, and NFE 17.7 kJ/g.
6 Crude protein: % crude protein contained in the diet as fed.
7 Crude lipid: % crude lipid contained in the diet as fed.
8 Average water temperature during a period of the growth trial.
9 Not available: the IE value was not available because the moisture and ash contents were not recorded in the reference.
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complexity the most, whereas R2
adj provides more insight into the

goodness-of-fit of a regression model.
2.3. Development of an OFR prediction model (objective 2)

Three models (Two-slope BL, Quadratic BL, and Quadratic models)
for the estimation of OFR were considered acceptable on the basis of
the model selection criteria from objective 1, and the 3 sets of OFR esti-
mates obtained by these models were used for developing an OFR pre-
diction model.
Table 2
The functional equation forms of the regressionmodels used to estimate optimum feeding
rate (OFR; % body weight per day) for the 19 datasets.

[Equation] Model name ƒ(θ,x)1 OFR

[1] One-slope BL2; Fig. 1[A]6 β0− β1 β2 − xð Þ; x b β2
β0 ; x ≥ β2

�
β2

[2] Two-slope BL3; Fig. 1[B] β0− β1 β2 − xð Þ; x b β2
β0 þ β3 x− β2ð Þ; x ≥ β2

�
β2

[3] Quadratic BL4; Fig. 1[C] β0− β1 β2 − xð Þ2; x b β2
β0 ; x ≥ β2

�
β2

[4] Quadratic5; Fig. 1[D] β0 + β1x + β2x
2 −β1 / 2β2

1 The parameter vector θ was composed of the parameters β0, β1, β2, and β3, which
were specific to the individual function, and the argument x was feeding rate (% body
weight per day). The value of the function ƒ(θ,x) at x was specific growth rate (% body
weight increase per day).

2 One-slope straight broken-line model.
3 Two-slope straight broken-line model.
4 Quadratic broken-line model.
5 Quadratic model (second-order polynomial). The OFR was calculated by solving for x

when the derivative of the function was set to zero.
6 The graphical illustrations of the Equations [1], [2], [3] and [4] are shown in [A], [B], [C],

and [D] in Fig. 1, respectively.
After estimating the OFRs from objective 1, the three sets of OFR es-
timates were plotted against the corresponding IBWs (see Supplemen-
tary Fig. S1). A variable transformation was needed to obtain a good fit
for most regression models because of the rapid decrease in the esti-
mated OFRs at the lower body weights. A good transformation was
found to be the natural logarithm of the square root of the IBW, so a

new variable w was defined as w ¼ ln
ffiffiffiffiffiffiffiffiffiffi
IBW

p� �
. Plots of the estimated

OFRs against the transformed IBWs (w) are shown in Supplementary
Fig. S2.

The regression models (see Table 3), including polynomial models of
order from 1 to 6 (Equations [5] to [10], respectively), a simple exponen-
tial model with a constant (Equation [11]), and a bi-exponential model
(Equation [12]), were applied to fit each set of 19 estimated OFRs against
w. A power function regression model (Equation [13]) was also fitted to
each set of estimated OFRs against the untransformed IBWs.

Fitting the regression models to the sets of estimated OFRs was per-
formed using the lm function for the polynomial models and the nls
function for the two exponential models as well as the power function
model. Both functions can be found in the standard library of R 3.0.1.
The model selection criteria for objective 2 were the same as those for
objective 1.

3. Results and discussion

3.1. The OFR estimates (objective 1)

Although the regression models, such as the broken-line and qua-
dratic models, reflect the dose–response relationship better than do
the ANOVA and multiple range tests, the use of a single model among
the possible regressionmodels can be disputed unless a relevant justifi-
cation for choosing that model is given. Shearer (2000) pointed out in
his critical review that selection of appropriate methods and models
for statistical analysis in the estimation of nutrient requirements should



Fig. 1. The graphical illustrations of the one-slope straight broken-line ([A]; Equation [1]), two-slope straight broken-line ([B]; Equation [2]), quadratic broken-line ([C]; Equation [3]), and
quadratic ([D]; Equation [4]) models shown in Table 2. The SGR, OFR, and FR represented the specific growth rate (SGR; % body weight increase per day), optimum feeding rate (OFR; %
bodyweight per day), and feeding rate (FR; % bodyweight per day), respectively. Theβ0,β1, andβ3 in thefigures [A] and [B]were defined as the asymptote of the first segment, slope of the
first segment, and slope of the second segment, respectively. The β3 in thefigure [B] can be either a positive or a negative slope. Theβ0 in the figure [C] was defined as the asymptote of the
first segment. Theβ0, β1, andβ2 in thefigure [D]were defined as the intercept at x=0, coefficient of the argument x, and coefficient of the argument x2, respectively (adopted fromZeitoun
et al., 1976; Robbins et al., 1979, 2006).
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be considered by the researcher. He showed that the re-evaluation of
the published data with the Quadratic model resulted in optimum
nutrient levels that varied 20% to 400% from the original broken-line
models. Thus, it is necessary to test various models for the estimation
of OFR and to justify the model that should be chosen based on specific
model selection criteria.

The OFRswere estimated for the 19 datasets using the One-slope BL,
Two-slope BL, Quadratic BL, and Quadratic models (see Table 4 and
Fig. 2). The One-slope BLmodel for the Datasets 15 and 16 and the Qua-
dratic BL model for the Dataset 16 could not estimate the OFR because
the estimation algorithm failed to achieve convergence. The OFR esti-
mates produced by each of the aforementioned models were not iden-
tical within each dataset with the magnitude of the difference
between the smallest and largest OFR estimates, ranging from 15.4%
(between the Two-slope BL and Quadratic models in the Dataset 16)
to 162.5% (between the Two-slope BL and either the Quadratic BL or
Quadratic models in the Dataset 14). Robbins et al. (2006) stated that
optimum levels will be underestimated if a dataset is less adequately
fitted by the One-slope BL and Two-slope BL models than by the
Table 3
The functional equation forms of the regressionmodels used to fit the three
from the two-slope broken-line, quadratic broken-line, and quadratic mod

[Equation] Model name

[5] 1st order polynomial model1

[6] 2nd order polynomial model
[7] 3rd order polynomial model
[8] 4th order polynomial model
[9] 5th order polynomial model
[10] 6th order polynomial model
[11] Simple exponential model with a constant2

[12] Bi-exponential model
[13] Power function model

1 The a0 to a6 are estimated parameters unique to the Equations [5] to [
2 The a, b, k, k1, k2, and z are estimated parameters unique to the Equati

root of the initial body weight (IBW; g) (w ¼ ln
ffiffiffiffiffiffiffiffiffiffi
IBW

p� �
Þ:
Quadratic BL model. The results showed that the OFR estimates from
the One-slope BL and Two-slope BL models were smaller than those
from the Quadratic BL model in all but two datasets (Datasets 12 and
17).

The model selection criteria were calculated for the evaluation of
model performance (see Table 4). The duplicate model selection
criteria values within a dataset for each of the models were counted
individually. The R2

adj values show that the Quadratic BL and Quadratic
models (9 out of the 19 datasets, for each model) are the best fit to the
datasets, followed by the Two-slope BL (7 datasets) andOne-slope BL (3
datasets)models. The AIC andAICc values indicate that the Quadratic BL
model (9 out of the 19 datasets) performed best for the estimation of
OFR, followed by the Quadratic (8 datasets), Two-slope BL (4 datasets),
and One-slope BL (3 datasets) models. The threemodels (Two-slope BL,
Quadratic BL, and Quadratic models) were considered acceptable for
the estimation of OFR on the basis of the outcomes of the model selec-
tion criteria, and each set of OFR estimates obtained from the three
model analyses was used to develop an OFR prediction model in objec-
tive 2.
sets of optimum feeding rate (OFR; % bodyweight per day) estimates
el analyses for the development of the OFR prediction model.

Function: ƒ(w) or ƒ(IBW) = predicted OFR

ƒ(w) = a0 + a1w
1

ƒ(w) = a0 + a1w
1 + a2w

2

ƒ(w) = a0 + a1w
1 + a2w

2 + a3w
3

ƒ(w) = a0 + a1w
1 + a2w

2 + a3w
3 + a4w

4

ƒ(w) = a0 + a1w
1 + a2w

2 + a3w
3 + a4w

4 + a5w
5

ƒ(w) = a0 + a1w
1 + a2w

2 + a3w
3 + a4w

4 + a5w
5 + a6w

6

ƒ(w) = ae−kw + z
ƒ(w) = ae−k1w + be−k2w

ƒ(IBW) = aIBWb

10].
ons [11] to [13]. The w represents the natural logarithm of the square



Table 4
The optimum feeding rate (OFR; % body weight per day) estimates from the one-slope straight broken-line (One-slope BL), two-slope straight broken-line (Two-slope BL), quadratic
broken-line (Quadratic BL), and quadratic (Quadratic) model analyses and the values calculated by the model selection criteria, including the adjusted coefficient of correlation (R2

adj),
Akaike information criterion (AIC), and corrected AIC (AICc).

Dataset
(IBW1, g)

Model Estimated OFR (standard error) R2
adj AIC2 AICc2

1
(0.05)

One-slope BL 30.7 (2.5) 0.751 60.74 61.94
Two-slope BL 24.3 (3.2) 0.766 60.03 62.13
Quadratic BL 37.0 (5.4) 0.769 58.89 60.09
Quadratic 49.2 (4.2) 0.726 63.00 64.20

2
(0.09)

One-slope BL 15.9 (0.7) 0.923 57.75 58.95
Two-slope BL 11.9 (0.6) 0.958 43.95 46.05
Quadratic BL 19.6 (1.3) 0.945 49.59 50.79
Quadratic 25.3 (1.3) 0.912 60.88 62.08

3
(0.18)

One-slope BL 11.2 (0.6) 0.910 69.54 70.74
Two-slope BL 10.1 (1.7) 0.910 70.15 72.25
Quadratic BL 16.5 (2.1) 0.920 66.59 67.79
Quadratic 16.5 (2.1) 0.920 66.59 67.79

4
(0.37)

One-slope BL 6.1 (0.3) 0.903 50.32 51.52
Two-slope BL 5.8 (0.4) 0.907 50.01 52.11
Quadratic BL 8.3 (0.7) 0.905 49.91 51.11
Quadratic 11.9 (0.6) 0.833 63.29 64.49

5
(2.8)

One-slope BL 6.5 (0.4) 0.824 39.38 40.58
Two-slope BL 6.4 (0.6) 0.815 41.35 43.46
Quadratic BL 8.1 (0.9) 0.836 37.63 38.83
Quadratic 8.1 (0.9) 0.836 37.63 38.83

6
(4.5)

One-slope BL 4.8 (0.2) 0.958 12.19 13.39
Two-slope BL 5.1 (0.2) 0.956 14.14 16.24
Quadratic BL 6.1 (0.3) 0.955 13.95 15.15
Quadratic 6.1 (0.2) 0.958 12.32 13.52

7
(8.6)

One-slope BL 3.9 (0.2) 0.933 39.53 40.73
Two-slope BL 4.2 (0.4) 0.934 40.00 42.11
Quadratic BL 5.7 (0.4) 0.944 35.48 36.68
Quadratic 5.7 (0.4) 0.944 35.43 36.63

8
(10.0)

One-slope BL 4.4 (0.2) 0.954 26.97 28.17
Two-slope BL 4.4 (0.3) 0.952 28.94 31.04
Quadratic BL 5.9 (0.3) 0.970 16.95 18.15
Quadratic 5.9 (0.3) 0.970 16.95 18.15

9
(27.9)

One-slope BL 2.6 (0.1) 0.931 7.63 8.83
Two-slope BL 2.1 (0.2) 0.946 2.37 4.47
Quadratic BL 3.6 (0.2) 0.953 −1.72 −0.52
Quadratic 3.6 (0.2) 0.953 −1.68 −0.48

10
(37.0)

One-slope BL 1.9 (0.1) 0.931 −7.97 −6.77
Two-slope BL 2.1 (0.1) 0.931 −7.08 −4.98
Quadratic BL 2.7 (0.2) 0.926 −6.20 −5.00
Quadratic 3.0 (0.1) 0.928 −6.91 −5.71

11
(49.0)

One-slope BL 1.8 (0.2) 0.797 9.80 11.00
Two-slope BL 2.2 (0.1) 0.861 1.44 3.55
Quadratic BL 2.3 (0.3) 0.799 9.57 10.77
Quadratic 2.7 (0.1) 0.839 4.17 5.37

12
(62.0)

One-slope BL 1.4 (0.3) 0.473 17.46 18.66
Two-slope BL 1.7 (0.2) 0.642 8.97 11.08
Quadratic BL 1.7 (0.5) 0.464 17.85 19.05
Quadratic 2.5 (0.1) 0.415 19.95 21.15

13
(30.5)

One-slope BL 3.1 (0.2) 0.670 −6.15 −3.15
Two-slope BL 2.7 (0.3) 0.666 −5.59 0.12
Quadratic BL 3.4 (0.5) 0.705 −7.47 −4.47
Quadratic 3.4 (0.4) 0.704 −7.46 −4.46

14
(359.9)

One-slope BL 1.4 (0.2) 0.702 15.62 17.80
Two-slope BL 0.8 (0.2) 0.729 14.76 18.76
Quadratic BL 2.1 (0.5) 0.733 13.98 16.16
Quadratic 2.1 (0.5) 0.733 13.98 16.16

15
(418.8)

One-slope BL N/A3

Two-slope BL 1.3 (0.1) 0.936 −34.01 −30.01
Quadratic BL 1.6 (0.2) 0.905 −28.48 −26.30
Quadratic 1.6 (0.1) 0.912 −29.69 −27.51

16
(470.4)

One-slope BL N/A
Two-slope BL 1.3 (0.3) 0.403 −3.62 0.38
Quadratic BL N/A
Quadratic 1.5 (0.1) 0.559 −8.74 −6.56

17
(543.5)

One-slope BL 0.8 (0.1) 0.560 −15.98 −13.80
Two-slope BL 0.9 (0.1) 0.610 −17.22 −13.22
Quadratic BL 0.9 (0.5) 0.560 −15.98 −13.80
Quadratic 1.4 (0.1) 0.618 −18.08 −15.90

18
(616.7)

One-slope BL 0.8 (0.1) 0.792 −30.65 −28.46
Two-slope BL 0.8 (0.1) 0.771 −28.67 −24.67
Quadratic BL 1.0 (0.2) 0.792 −30.65 −28.46
Quadratic 1.5 (0.1) 0.666 −23.58 −21.39

(continued on next page)
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Table 4 (continued)

Dataset
(IBW1, g)

Model Estimated OFR (standard error) R2
adj AIC2 AICc2

19
(764)

One-slope BL 1.1 (0.2) 0.614 −10.36 −6.93
Two-slope BL 1.3 (0.1) 0.676 −11.98 −5.32
Quadratic BL 1.4 (0.4) 0.608 −10.19 −6.76
Quadratic 1.3 (0.1) 0.668 −12.00 −8.57

1 Initial body weight: The average initial weight of fish in all tanks when the growth trial began.
2 The smaller AIC and AICc values indicate the better model for its performance.
3 Not available: Either the One-slope BL or Quadratic model was not able to estimate OFR due to failure of the estimation algorithm to achieve convergence.
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Morgan et al. (1975) developed the general saturation equation as a
general model for the nutritional responses of higher organisms from
observation that the nutrient–response curves resembled either the hy-
perbolic saturation curves of theMichaelis–Menten type (Michaelis and
Menten, 1913) or the sigmoidal saturation curves described by the Hill
equations (Hill, 1913). The shape of the curve for the general saturation
model shows that the rate of growth with increasing nutrient levels de-
creases as the nutrient levels approach their optimum levels, which im-
plies that a nutrient response to the graded levels of nutrients up to the
optimum level is more likely curvilinear. Thus, it is reasonable to choose
models encompassing the curve-like dose–response relationship of the
Quadratic BL and Quadratic models, consistent with our findings.

The Quadratic model has been commonly used by researchers to es-
timate optimum nutrient levels and/or to estimate an economical pro-
portion of the optimum nutrient level based on diminishing returns
(e.g. 95% of optimum level) (Pesti et al., 2009; Shearer, 2000; Zeitoun
et al., 1976). The Quadratic model represents a typical dose–response
relationship with the growth responses reaching a maximum with in-
creasing nutrient levels, then decreasing when the nutrient levels in-
crease to intolerable levels. Shearer (2000) showed that re-evaluation
of published nutrient requirements, using the Quadratic model, provid-
ed the best fit based on residual analysis in 18 out of the 30 cases. In
spite of the advantages of using the Quadratic model for the estimation
of nutrient requirement levels, this model does not seem to represent
the feeding rate–response relationship as well as the Quadratic BL
model does. A number of the similar feeding rate–response patterns,
exhibiting that the response tends to plateau when fish are fed above
the OFR rather than decreasing, can be observed in the literature (De
Riu et al., 2012; Deng et al., 2003; Eroldogan et al., 2004; Ghosh et al.,
1984; Hung and Lutes, 1987; Hung et al., 1989, 1993a,b; Okorie et al.,
2013; Santiago et al., 1987). The plots shown in Fig. 2 also represent
the typical feeding rate–response relationship. The behavior of farmed
fish generally shows cessation of feeding once they are satiated, and
the growth response to overfeeding seems not to change unless exces-
sive uneaten feeds deteriorate rearing water quality. Thus, given the
overall performance of the estimation of the OFR for the 19 datasets,
the Quadratic BL model emerged as the most favorable one.

Shearer (2000) stated that the selection of dietary input levels is crit-
ical to the estimation of optimum nutrient requirements because inap-
propriately selected levels, resulting in an atypical dose–response curve,
cannot be salvaged even by the best statistical test. He suggested that
the allocation of the input levels should be distributed as 1/4 in the as-
cending portion of the curve, 1/2 near the estimated requirement, and
1/4 where the curve begins to decline (or to plateau). In this study,
the selected feeding rate levels of the 19 datasets did not completely
meet these criteria; however, the typical feeding rate–response curve
was observed in most of the datasets (see Table 1 and Fig. 2).

Data quality is also critical to the estimation of OFR because the
R2

adj, AIC, and AICc values are correlated with the deviations of ob-
servations from estimates. Although the Quadratic BL model was
chosen as the best one among the tested regression models based
on the model performance and the observation of the feeding rate–
response pattern, the efficiency of out-performance by this model
was nearly 50% (9 out of the 19 datasets), which might call into
question its feasibility. The low efficiency (but highest among the
tested models) may be attributed to the high deviations of the re-
sponses from the typical curve (Datasets 12, 16, and 17; see Table 4
and Fig. 2), numerically indicated by the small R2

adj values of all
the models in these datasets. It is unclear why the unusual responses
were observed; however, they could be attributed to the high variations
of the initial body weights when the growth trials began (e.g. 61.9 ±
16.7 g (mean ± SD) in the Dataset 12 compared to 2.8 ± 0.1 g in the
Dataset 5).

3.2. The OFR prediction models (objective 2)

Although the Quadratic BL model performed best among the tested
models for the estimation of OFR for the 19 datasets, the Two-slope BL
andQuadraticmodelswere still chosen for the development of OFRpre-
dictionmodel because they are commonly used in nutrient requirement
research for fish. The results of the Two-slope BL and Quadratic models
are provided in Supplementary Table S1 and Fig. S3, and Supplementary
Table S2 and Fig. S4, respectively.

The three plots of the estimated OFRs from the aforementioned
models, plotted against the corresponding IBWs, are presented in
Supplementary Fig. S1. Due to the sharp “drop and turn” of the OFR
estimates when the IBWs were small it was difficult to fit most re-
gression models using the original data. Therefore, the data was
transformed using the natural logarithm of the square root of the

IBWs, w ¼ ln
ffiffiffiffiffiffiffiffiffiffi
IBW

p� �
, where w is the transformed IBW. As the result

of the transformation, the more gradually declining trend on the OFR
estimates against w was attained (see Supplementary Fig. S2).

The OFR predictionmodel equations of the polynomial, exponential,
and power function regression models were obtained by fitting these
regression models to the three sets of OFR estimates (see Table 5 for
the Quadratic BL model; Supplementary Table S1 for the Two-slope BL
model; and Supplementary Table S2 for the Quadratic model). The
plots of the predicted OFRs, determined by the OFR prediction model
equations, and the observed OFRs, estimated by the Quadratic BL,
Two-slope BL, and Quadratic models, plotted against w and against
the untransformed IBW are presented in Fig. 3 and in Supplementary
Fig. S3 and S4, respectively. The plots showed that the predicted OFRs,
determined by the simple exponential and bi-exponential regression
models, were fitted to the observed OFRs just as good as the polynomial
regression model of higher orders. Noticeably, the power function
regression model performed poorly when the IBWswere small.

The R2
adj, AIC, and AICc values for the comparison of model perfor-

mance on thefitness of the polynomial, exponential, and power function
regression models to each set of estimated OFRs are shown in Table 6,
using the data from the Quadratic BL model analysis and in Supplemen-
tary Table S3, using thedata from theTwo-slope BL andQuadraticmodel
analyses. Due to its simplicity the power function regression model was
selected by the AICc in two out of the three cases; however, the
goodness-of-fit was relatively poor compared to the exponential regres-
sion models, indicated by the small R2

adj values. The model's poorness-
of-fit was also shown on the figures, especially when the IBWs were
small. The performance of the 6th order polynomial regression model



Fig. 2. The plots of the line/curve fits to the 19 datasets, performed by the one-slope straight broken-line ( ), two-slope straight broken-line ( ), quadratic broken-line (- - - -) and
quadratic ( ) model analyses. The symbol (Δ) indicated the specific growth rate (SGR; % bodyweight increase per day) responding to each feeding rate (FR; % bodyweight per day). The
initial bodyweight (IBW; g)was the average initialweight offish in all tankswhen the growth trial began. The one-slope straight broken-linemodel for theDatasets 15 and16 and the quadratic
broken-line model for the Dataset 16 were not able to estimate the optimum feeding rate (% body weight per day), due to failure of the estimation algorithm to achieve convergence.
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Fig. 2 (continued).
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was considered good on the basis of the larger R2
adj and smaller AIC

values compared to the other models' values; however, the model per-
formance was penalized by the AICc showing the largest value among
all the models because of the number of parameters. The bi-
exponential model, less complex than the polynomial regression
Table 5
The optimum feeding rate (OFR; % body weight per day) prediction model equations, obtained
estimates from the quadratic broken-line model analysis.

Polynomial regression model (ƒ(w)1 = a0 + a1w
1 + ⋯ + adw

d , d = 1,…,6)

Order Estimated coefficients
(standard error)

â0 â1 â2

1 13.681 −4.895 –

(1.617) (0.798)
2 11.344 −8.276 1.677

(1.244) (0.961) (0.390
3 7.146 −7.114 4.773

(1.543) (0.806) (0.946
4 6.647 −2.185 4.335

(0.949) (1.113) (0.586
5 8.212 −1.123 1.111

(0.937) (0.967) (1.219
6 8.637 −1.516 0.205

(1.288) (1.270) (2.207

Exponential and power function regression models

Model Estimated coefficients
(standard error)

â b̂ k̂

Simple exponential 3.339 – 1.515
(ƒ(w) = a e−kw + z) (1.043) (0.220
Bi-exponential 0.00344 8.695 –

(ƒ(w) ¼ a e−k1w þ b e−k2w) (0.0123) (0.606)
Power function 8.761 −0.427 –

(ƒ(IBW)2 = aIBWb) (1.111) (0.050)

1 ƒ(w) = the predicted OFR atw, where the w represented the natural logarithm of the squ
2 The value of the function ƒ(IBW) at IBW indicates the predicted OFR.
model of higher orders, showed the largest R2
adj values in two out of

the three cases and the comparatively small AICc values in all the
cases. Otherwise, there are the caveats of using the bi-exponential
model, which are 1) that thismodel provides an asymptotic estimate, al-
most zero OFR, when the body weight is very large and 2) that the
by fitting the polynomial, exponential, and power function regression models to the OFR

â3 â4 â5 â6

– – – –

– – – –

)
−0.993 – – –

) (0.288)
−3.561 0.706 – –

) (0.549) (0.143)
−3.695 1.863 −0.265 –

) (0.443) (0.420) (0.093)
−3.033 2.105 −0.501 0.039

) (1.401) (0.649) (0.480) (0.078)

k̂1 k̂2 ẑ

– – 2.786
) (0.646)

5.684 0.549 –

(2.309) (0.065)
– – –

are root of the initial body weight (IBW; g) (w ¼ ln
ffiffiffiffiffiffiffiffiffiffi
IBW

p� �
Þ:



Fig. 3. The plots of the observed and predicted optimum feeding rates (OFR; % bodyweight per day) against the transformed initial body weights (IBW; g) (w ¼ ln
ffiffiffiffiffiffiffiffiffiffi
IBW

p� �
) and the un-

transformed IBW (g). The observed OFRs were identical to the OFRs estimated by the quadratic broken-line model analysis. The predicted OFRs were determined by each one of the OFR
model equations shown in Table 5.
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standard errors of the estimated coefficients (especially, â) are relatively
large compared to the power function and 6th order polynomial regres-
sion models. The establishment of restriction from using this model
for white sturgeon larger than about 800 g will prevent under-
estimation of OFR with large body weights. Also, the large standard
errors may be negligible because the overall fitness of the model to
the observations is good, indicated by the larger R2

adj and smaller AICc
values and the very good fit as shown in Fig. 3 and in Supplementary
Fig. S3 and S4. Thus, given the overall performance of model fitness,
the bi-exponential regression model emerged as the most favorable
one.
Table 6
The values calculated by the model selection criteria, including the adjusted coefficient of
correlation (R2

adj), Akaike information criteria (AIC), and corrected AIC (AICc), for the
polynomial, exponential, and power functionmodels fitting the estimated optimum feed-
ing rates (% body weight per day) from the quadratic broken-line model analysis.

Regression model R2
adj AIC1 AICc1

1st order polynomial 0.662 113.81 119.06
2nd order polynomial 0.838 101.36 119.76
3rd order polynomial 0.905 92.30 131.59
4th order polynomial 0.964 75.29 144.98
5th order polynomial 0.977 67.91 179.91
6th order polynomial 0.975 69.50 238.96
Simple exponential 0.941 83.09 101.49
Bi-exponential 0.979 65.53 104.81
Power function 0.910 89.95 95.20

1 The smaller AIC and AICc values indicate the better model for its performance.
3.3. Applications and limitations of the OFR prediction model

The approachused in this study is unique and informative because of
the large number of datasets (19), the use of multiple statistical criteria,
the wide range of starting body weights (0.05 g to 764 g), and lack of
similar studies in the literature.

Themain purpose of the development of the OFRpredictionmodel is
theprovision of anOFR estimate providing amaximumgrowth, applica-
ble for both experimental settings and aquaculture facilities. In general,
experimental or aquaculture conditions, such aswater quality (temper-
ature, dissolved oxygen, nitrogenouswaste, pH, etc.), nutrient composi-
tion of feeds, and stocking density, can affect growth performance. The
experimental conditions of the studies that provided the 19 datasets
for the development of the OFR predictionmodel were well maintained
facilitating favorable growth conditions. When the OFR prediction
model is applied in sophisticated culture systems with high stocking
densities (e.g. recirculating system), a good water quality management
program is essential to achieve desirable outcomes and to avoid low ox-
ygen and high nitrogenous waste levels.

Reduction in feed costs and maximization of growth are two major
goals for an aquaculture operation. The OFR predictionmodel, however,
does not necessarily provide the highest feed efficiency by feeding fish
at the predicted OFR because this model was developed using the
datasets obtained by the feeding trials with the specific continuous
feeding regime, resulting in potentially undesired feed wastes. Howev-
er, feed costs of feeding small fish is relatively low compared to costs of
feeding large fish as a total amount of feed increaseswith increasingfish
size even though OFR decreases. Lower nutritional status in young fish,
resulting from underfeeding, leads to lower final weight and reduced
tolerance to stress (Buckley et al., 1999; Deng et al., 2009), which will
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negatively affect the aquaculture operation. Thus, application of the OFR
prediction model can be a cost-effective technique tomaximize growth
of white sturgeon, resulting in higher productivity which will likely
override any potential loss due to feed costs.

4. Summary

The three best models to estimate the OFR for 19 datasets were the
Two-slope BL, Quadratic BL, and the Quadratic models. Based on the re-
sults from objective 1, the estimation of OFR for a given dataset requires
the consideration of various possible models and then choosing a best-
fit model based on specific model selection criteria in order to have an
accurate estimate. In addition, selection of appropriate input levels
and conditions are essential to control data quality and to ensure that
the chosen model provides the most accurate estimate based on the
specific model selection criteria.

The OFR estimates from objective 1 were used to develop a predic-
tion equation that could estimate the OFR at different body weights.
The model that was superior, after testing several models, was the bi-
exponential model and is recommended for use with white sturgeon
from about 0.05 g to 800 g. The newly developed bi-exponential OFR
prediction equation, obtained by fitting the estimated OFRs derived
from the Quadratic BL model analysis, is

OFR % body weight per dayð Þ ¼ 0:00344 �0:0123ð Þe−5:684 �2:309ð Þ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
body weight

p
Þ

þ8:695 �0:606ð Þe−0:549 �0:065ð Þ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
body weight

p
Þ
:
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